ﻻ يوجد ملخص باللغة العربية
We characterize the spatial density of the Pan-STARRS1 (PS1) sample of RR Lyrae stars, to study the properties of the old Galactic stellar halo as traced by RRab stars. This sample of 44,403 sources spans Galactocentric radii of $0.55 ; mathrm{kpc} leq R_{mathrm{gc}} leq 141 ; mathrm{kpc}$ with a distance precision of 3% and thus is able to trace the halo out to larger distances than most previous studies. After excising stars that are attributed to dense regions such as stellar streams, the Galactic disc and bulge as well as halo globular clusters, the sample contains ${sim}11,000$ sources within $20 ; mathrm{kpc} leq R_{mathrm{gc}} leq 131 ; mathrm{kpc}$. We then apply forward modeling using ellipsoidal stellar density models $rho(l,b,R_{mathrm{gc}})$ both with a constant and a radius-dependent halo flattening $q(R_{mathrm{gc}})$. Assuming constant flattening $q$, the distribution of the sources is reasonably well fit from $20 ; mathrm{kpc}$ to $131 ; mathrm{kpc}$ by a single power law with $n=4.40^{+0.05}_{-0.04}$ and $q=0.918^{+0.016}_{-0.014}$. The distance distribution is fit comparably well by an Einasto profile with $n=9.53^{+0.27}_{-0.28}$, an effective radius $r_{mathrm{eff}}=1.07 pm 0.10 ; mathrm{kpc}$ and a halo flattening of $q=0.923 pm 0.007$. If we allow for a radius-dependent flattening $q(R_{mathrm{gc}})$, we find evidence for a distinct flattening of $q{sim}0.8$ of the inner halo at ${sim} 25 ; mathrm{kpc}$. Additionally, we find that the south Galactic hemisphere is more flattened than the north Galactic hemisphere. The results of our work are largely consistent with many earlier results, e.g. cite{Watkins2009}, cite{Iorio2017}. We find that the stellar halo, as traced in RR Lyrae stars, exhibits a substantial number of further significant over- and underdensities, even after all known overdensities have been masked.
We present a comprehensive and precise description of the Sagittarius (Sgr) stellar streams 3D geometry as traced by its old stellar population. This analysis draws on the sample of ${sim}44,000$ RR Lyrae (RRab) stars from the Pan-STARRS1 (PS1) 3$pi$
We present new spatial models and distance estimates for globular clusters (GC) and dwarf spheroidals (dSphs) orbiting our Galaxy based on RR Lyrae (RRab) stars in the Pan-STARRS1 (PS1) 3$pi$ survey. Using the PS1 sample of RRab stars from Sesar et a
We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XDSS). The area we consider is located in the North Galactic Cap, covering 376.75 sq deg at RA $approx$ 150 deg and Dec $approx$ 27 deg down to a
We show that tagging RR Lyrae stars according to their location in the period-amplitude diagram can be used to shed light on the genesis of the Galactic stellar halo. The mixture of RR Lyrae of ab type, separated into classes along the lines suggeste
We present the analysis of 12227 type-ab RR Lyrae found among the 200 million public lightcurves in the Catalina Surveys Data Release 1 (CSDR1). These stars span the largest volume of the Milky Way ever surveyed with RR Lyrae, covering ~20,000 square