ترغب بنشر مسار تعليمي؟ اضغط هنا

The Density Profile and Kinematics of the Milky Way with RR Lyrae Stars

85   0   0.0 ( 0 )
 نشر من قبل Iminhaji Ablimit
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most of known RR Lyraes are type ab RR Lyraes (RRLab), and they are the excellent tool to map the Milky Way and its substructures. We find that 1148 RRLab stars determined by Drake et al.(2013) have been observed by spectroscopic surveys of SDSS and LAMOST. We derived radial velocity dispersion, circular velocity and mass profile from 860 halo tracers in our paper I. Here, we present the stellar densities and radial velocity distributions of thick disk and halo of the Milky Way. The 288 RRLab stars located in the thick disk have the mean metallicity of [Fe/H]$=-1.02$. Three thick disk tracers have the radial velocity lower than 215 km $rm s^{-1}$. With 860 halo tracers which have a mean metallicity of [Fe/H]$=-1.33$, we find a double power-law of $n(r) propto r^{-2.8}$ and $n(r) propto r^{-4.8}$ with a break distance of 21 kpc to express the halo stellar density profile. The radial velocity dispersion at 50 kpc is around 78 km $rm s^{-1}$.



قيم البحث

اقرأ أيضاً

RR Lyrae stars being distance indicators and tracers of old population serve as excellent probes of the structure, formation, and evolution of our Galaxy. Thousands of them are being discovered in ongoing wide-field surveys. The OGLE project conducts the Galaxy Variability Survey with the aim to detect and analyze variable stars, in particular of RRab type, toward the Galactic bulge and disk, covering a total area of 3000 deg^2. Observations in these directions also allow detecting background halo variables and unique studies of their properties and distribution at distances from the Galactic Center to even 40 kpc. In this contribution, we present the first results on the spatial distribution of the observed RRab stars, their metallicity distribution, the presence of multiple populations, and relations with the old bulge. We also show the most recent results from the analysis of RR Lyrae stars of the Sgr dwarf spheroidal galaxy, including its center, the globular cluster M54.
81 - Z. Prudil , M. Hanke , B. Lemasle 2021
We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR~Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky Survey (SDSS), we determined line-of-sight velocities for individual exposures and derived the systemic velocities of the RR~Lyrae stars. In combination with the stars spectroscopic metallicities and textit{Gaia} EDR3 astrometry, we investigated the northern part of the Orphan stream. In our probabilistic approach, we found 20 single mode RR~Lyrae variables likely associated with the Orphan stream based on their positions, proper motions, and distances. The acquired sample permitted us to expand our search to nonvariable stars in the SDSS dataset, utilizing line-of-sight velocities determined by the SDSS. We found 54 additional nonvariable stars linked to the Orphan stream. The metallicity distribution for the identified red giant branch stars and blue horizontal branch stars is, on average, $-2.13pm0.05$ dex and $-1.87pm0.14$ dex, with dispersions of 0.23 and 0.43dex, respectively. The metallicity distribution of the RR~Lyrae variables peaks at $-1.80pm0.06$ dex and a dispersion of 0.25dex. Using the collected stellar sample, we investigated a possible link between the ultra-faint dwarf galaxy Grus II and the Orphan stream. Based on their kinematics, we found that both the stream RR~Lyrae and Grus II are on a prograde orbit with similar orbital properties, although the large uncertainties on the dynamical properties render an unambiguous claim of connection difficult. At the same time, the chemical analysis strongly weakens the connection between both. We argue that Grus II in combination with the Orphan stream would have to exhibit a strong inverse metallicity gradient, which to date has not been detected in any Local Group system.
107 - David M. Nataf 2016
I review the literature covering the issue of interstellar extinction toward the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor $sim 100 times$ in the past twenty years, and the total-to-selective extinction ratios reported have shifted by $sim$20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and standard literature values.
We use deep multi-epoch near-IR images of the VISTA Variables in the Via Lactea (VVV) Survey to search for RR Lyrae stars towards the Southern Galactic plane. Here we report the discovery of a group of RR Lyrae stars close together in VVV tile d025. Inspection of the VVV images and PSF photometry reveals that most of these stars are likely to belong to a globular cluster, that matches the position of the previously known star cluster FSR,1716. The stellar density map of the field yields a $>100$ sigma detection for this candidate globular cluster, that is centered at equatorial coordinates $RA_{J2000}=$16:10:30.0, $DEC_{J2000}=-$53:44:56; and galactic coordinates $l=$329.77812, $b=-$1.59227. The color-magnitude diagram of this object reveals a well populated red giant branch, with a prominent red clump at $K_s=13.35 pm 0.05$, and $J-K_s=1.30 pm 0.05$. We present the cluster RR Lyrae positions, magnitudes, colors, periods and amplitudes. The presence of RR Lyrae indicates an old globular cluster, with age $>10$ Gyr. We classify this object as an Oosterhoff type I globular cluster, based on the mean period of its RR Lyrae type ab, $<P>=0.540$ days, and argue that this is a relatively metal-poor cluster with $[Fe/H] = -1.5 pm 0.4$ dex. The mean extinction and reddening for this cluster are $A_{K_s}=0.38 pm 0.02$, and $E(J-K_s)=0.72 pm 0.02$ mag, respectively, as measured from the RR Lyrae colors and the near-IR color-magnitude diagram. We also measure the cluster distance using the RR Lyrae type ab stars. The cluster mean distance modulus is $(m-M)_0 = 14.38 pm 0.03$ mag, implying a distance $D = 7.5 pm 0.2$ kpc, and a Galactocentric distance $R_G=4.3$ kpc.
We combine the Siding Spring Survey of RR Lyrae stars with the Southern Proper Motion Catalog 4, in order to detect and kinematically characterize overdensities in the inner halo of the Milky Way. We identify one such overdensity above the Galactic p lane, in quadrant 4 of the Galaxy. The overdensity extends at least 20 degrees in longitude, has an average heliocentric distance of 8 kpc with a depth of 4 kpc, and is confined within 4 kpc of the Galactic plane. Its metallicity distribution is distinct from that of the field population having a peak at -1.3 and a pronounced tail to -2.0. Proper motions indicate a net vertical motion away from the plane, and a low orbital angular momentum. Qualitatively, these orbit properties suggest a possible association with omega Centauris parent satellite. However, comparison to a specific omega Cen N-body disruption model does not give a good match with observations. Line-of-sight velocities, and more extensive N-body modelling will help clarify the nature of this overdensity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا