ترغب بنشر مسار تعليمي؟ اضغط هنا

Circularly polarized light detector based on ferromagnet/semiconductor junctions

111   0   0.0 ( 0 )
 نشر من قبل Nozomi Nishizawa
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Helicity-dependent photocurrent delta-I has been detected successfully under experimental configuration that a circularly polarized light beam is impinged with a right angle on a cleaved sidewall of the Fe/x-AlOx/GaAs-based n-i-p double-heterostructure. The photocurrent delta-I has showed a well-defined hysteresis loop which resembles that of the magnetization of the in-plane magnetized Fe layer in the devices. The value of delta-I has been |delta-I|~0.2 nA at 5 K under the remnant magnetization state. Study on temperature dependence of the relative delta-I value at H = 0 has revealed that it is maximized at temperatures 125 - 150 K, and is still measurable at room temperature.



قيم البحث

اقرأ أيضاً

We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side-facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an anti-parall el magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.
Resonant angle scanned x-ray photoelectron diffraction (RXPD) allows the determination of the atomic and magnetic structure of surfaces and interfaces. For the case of magnetized nickel the resonant L2 excitation with circularly polarized light yield s electrons with a dichroic signature from which the dipolar part may be retrieved. The corresponding L2MM and L3MM Auger electrons carry different angular momenta since their source waves rotate the dichroic dipole in the electron emission patterns by distinct angles.
The circular polarization of light scattered by biological tissues provides valuable information and has been considered as a powerful tool for the diagnosis of tumor tissue. We propose a non-staining, non-invasive and in-vivo cancer diagnosis techni que using an endoscope equipped with circularly polarized light-emitting diodes (spin-LEDs). We studied the scattering process of the circularly polarized light against cell nuclei in pseudo-healthy and cancerous tissues using the existing Monte Carlo method. The calculation results indicate that the resultant circular polarizations of light scattered in pseudo tissues shows clear difference in a wide range of detection angle, and the sampling depth depends on those detection angles. The structure of the endoscope probe comprising spin-LEDs is designed based on the calculation results, providing structural and depth information regarding biological tissues simultaneously.
We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedanc e and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect.
123 - Ofer Kfir 2017
This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and p hase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the unique coherence of high harmonics, this approach will facilitate quantitative, element-specific and spatially-resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا