ترغب بنشر مسار تعليمي؟ اضغط هنا

An invisible medium for circularly polarized electromagnetic waves

378   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Tamayama
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect.

قيم البحث

اقرأ أيضاً

Helicity-dependent photocurrent delta-I has been detected successfully under experimental configuration that a circularly polarized light beam is impinged with a right angle on a cleaved sidewall of the Fe/x-AlOx/GaAs-based n-i-p double-heterostructu re. The photocurrent delta-I has showed a well-defined hysteresis loop which resembles that of the magnetization of the in-plane magnetized Fe layer in the devices. The value of delta-I has been |delta-I|~0.2 nA at 5 K under the remnant magnetization state. Study on temperature dependence of the relative delta-I value at H = 0 has revealed that it is maximized at temperatures 125 - 150 K, and is still measurable at room temperature.
123 - Ofer Kfir 2017
This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and p hase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the unique coherence of high harmonics, this approach will facilitate quantitative, element-specific and spatially-resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.
We numerically demonstrate that a planar slab made of magnetic Weyl semimetal (a class of topological materials) can emit high-purity circularly polarized (CP) thermal radiation over a broad mid- and long-wave infrared wavelength range for a signific ant portion of its emission solid angle. This effect fundamentally arises from the strong infrared gyrotropy or nonreciprocity of these materials which primarily depends on the momentum separation between Weyl nodes in the band structure. We clarify the dependence of this effect on the underlying physical parameters and highlight that the spectral bandwidth of CP thermal emission increases with increasing momentum separation between the Weyl nodes. We also demonstrate using recently developed thermal discrete dipole approximation (TDDA) computational method that finite-size bodies of magnetic Weyl semimetals can emit spectrally broadband CP thermal light, albeit over smaller portion of the emission solid angle compared to the planar slabs. Our work identifies unique fundamental and technological prospects of magnetic Weyl semimetals for engineering thermal radiation and designing efficient CP light sources.
We introduce a solid material that is itself invisible, possessing identical electromagnetic properties as air (i.e. not a cloak) at a desired frequency. Such a material could provide improved mechanical stability, electrical conduction and heat diss ipation to a system, without disturbing incident electromagnetic radiation. One immediate application would be towards perfect antenna radomes. Unlike cloaks, such a transparent and self-invisible material has yet to be demonstrated. Previous research has shown that a single sphere or cylinder coated with plasmonic or dielectric layers can have a dark-state with considerably suppressed scattering cross-section, due to the destructive interference between two resonances in one of its scattering channels. Nevertheless, a massive collection of these objects will have an accumulated and detectable disturbance to the original field distribution. Here we overcome this bottleneck by lining up the dark-state frequencies in different channels. Specifically, we derive analytically, verify numerically and demonstrate experimentally that deliberately designed corrugated metallic wires can have record-low scattering amplitudes, achieved by aligning the nodal frequencies of the first two scattering channels. This enables an arbitrary assembly of these wires to be omnidirectionally invisible and the effective constitutive parameters nearly identical to air. Measured transmission spectra at microwave frequencies reveal indistinguishable results for all the arrangements of the 3D-printed samples studied.
Nonlinear optical media that are normally dispersive, support a new type of localized (nondiffractive and nondispersive) wavepackets that are X-shaped in space and time and have slower than exponential decay. High-intensity X-waves, unlike linear one s, can be formed spontaneously through a trigger mechanism of conical emission, thus playing an important role in experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا