ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant Photoelectron Diffraction with circularly polarized light

175   0   0.0 ( 0 )
 نشر من قبل Martin Morscher
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resonant angle scanned x-ray photoelectron diffraction (RXPD) allows the determination of the atomic and magnetic structure of surfaces and interfaces. For the case of magnetized nickel the resonant L2 excitation with circularly polarized light yields electrons with a dichroic signature from which the dipolar part may be retrieved. The corresponding L2MM and L3MM Auger electrons carry different angular momenta since their source waves rotate the dichroic dipole in the electron emission patterns by distinct angles.



قيم البحث

اقرأ أيضاً

Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measu rement of the helicity of magnetic structures is of current interest. Soft x-ray resonant diffraction is particularly advantageous because it combines element selectivity with a large magnetic cross-section. We calculate the polarization dependence of the resonant magnetic x-ray cross-section (electric dipole transition) for the basal plane magnetic spiral in hexaferrite Ba0.8Sr1.2Zn2Fe12O22 and deduce its domain population using circular polarized incident radiation. We demonstrate there is a direct correlation between the diffracted radiation and the helicity of the magnetic spiral.
Chiral properties of the two phases - collinear motif (below Morin transition temperature, TM=250 K) and canted motif (above TM) - of magnetically ordered hematite ({alpha}-Fe2O3) have been identified in single crystal resonant x-ray Bragg diffractio n, using circular polarized incident x-rays tuned near the iron K-edge. Magneto-electric multipoles, including an anapole, fully characterize the high-temperature canted phase, whereas the low-temperature collinear phase supports both parity-odd and parity-even multipoles that are time-odd. Orbital angular momentum accompanies the collinear motif, while it is conspicuously absent with the canted motif. Intensities have been successfully confronted with analytic expressions derived from an atomic model fully compliant with chemical and magnetic structures. Values of Fe atomic multipoles previously derived from independent experimental data, are shown to be completely trustworthy.
Depolarization of circularly polarized light scattered from biological tissues depends on structural changes in cell nuclei, which can provide valuable information for differentiating cancer tissues concealed in healthy tissues. In this study, we exp erimentally verified the possibility of cancer identification using scattering of circularly polarized light. We investigated the polarization of light scattered from a sliced biological tissue with various optical configurations. A significant difference between circular polarizations of light scattered from cancerous and healthy tissues is observed, which is sufficient to distinguish a cancerous region. The line-scanning experiments along a region incorporating healthy and cancerous parts indicate step-like behaviors in the degree of circular polarization corresponding to the state of tissues, whether cancerous or normal. An oblique and perpendicular incidence induces different resolutions for identifying cancerous tissues, which indicates that the optical arrangement can be selected according to the priority of resolution.
Time-resolved imaging reveals that the helicity dependent all-optical switching (HD-AOS) of Co/Pt ferromagnetic multilayers proceeds by two stages. First one involves the helicity independent and stochastic nucleation of reversed magnetic domains. At the second stage circularly polarized light breaks the degeneracy between the magnetic domains and promotes the preferred direction of domain wall (DW) motion. The growth of the reversed domain from the nucleation cite, for a particular helicity, leads to full magnetic reversal. This study demonstrates a novel mechanism of HD-AOS mediated by the deterministic displacement of DWs.
We have used resonant photoemission with circular polarized light as a new tool to obtain information about the electronic structure of half-metals. After careful sample surface preparation of La0.7Sr0.3MnO3, we have obtained a dichroic signal for th e L2,3 absorption of Mn. Working with a magnetized sample and circular polarized light we observe a clear effect of the helicity of light on the position of the resonant Raman-Auger photoelectrons from the Mn 2p3p3d decay. These results allow us to achieve a rough estimate of the half-metallic spin half-gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا