ﻻ يوجد ملخص باللغة العربية
We study the measure of unique information $UI(T:Xsetminus Y)$ defined by Bertschinger et al. (2014) within the framework of information decompositions. We study uniqueness and support of the solutions to the optimization problem underlying the definition of $UI$. We identify sufficient conditions for non-uniqueness of solutions with full support in terms of conditional independence constraints and in terms of the cardinalities of $T$, $X$ and $Y$. Our results are based on a reformulation of the first order conditions on the objective function as rank constraints on a matrix of conditional probabilities. These results help to speed up the computation of $UI(T:Xsetminus Y)$, most notably when $T$ is binary. In the case that all variables are binary, we obtain a complete picture of where the optimizing probability distributions lie.
Given a pair of predictor variables and a response variable, how much information do the predictors have about the response, and how is this information distributed between unique, redundant, and synergistic components? Recent work has proposed to qu
The information that two random variables $Y$, $Z$ contain about a third random variable $X$ can have aspects of shared information (contained in both $Y$ and $Z$), of complementary information (only available from $(Y,Z)$ together) and of unique inf
The unique information ($UI$) is an information measure that quantifies a deviation from the Blackwell order. We have recently shown that this quantity is an upper bound on the one-way secret key rate. In this paper, we prove a triangle inequality fo
The partial information decomposition (PID) is a promising framework for decomposing a joint random variable into the amount of influence each source variable Xi has on a target variable Y, relative to the other sources. For two sources, influence br
In multi-terminal communication systems, signals carrying messages meant for different destinations are often observed together at any given destination receiver. Han and Kobayashi (1981) proposed a receiving strategy which performs a joint unique de