ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam by design: laser manipulation of electrons in modern accelerators

65   0   0.0 ( 0 )
 نشر من قبل Gennady Stupakov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, we review a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation. Basic theories of electron-laser interactions, techniques to create micro- and nano-structures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. We overview laser-based techniques for the generation of fully coherent x-rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, we describe various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics. Together these techniques represent a new emerging concept of beam by design in modern accelerators, which is the primary focus of this article

قيم البحث

اقرأ أيضاً

199 - Q. Ji , K. K. Afridi , T. Bauer 2021
We report on the development of multi-beam RF linear ion accelerators that are formed from stacks of low cost wafers and describe the status of beam power scale-up using an array of 120 beams. The total argon ion current extracted from the 120-beamle t extraction column was 0.5 mA. The measured energy gain in each RF gap reached as high as 7.25 keV. We present a path of using this technology to achieve ion currents >1 mA and ion energies >100 keV for applications in materials processing.
The question of suitability of transfer matrix description of electrons traversing grating-type dielectric laser acceleration (DLA) structures is addressed. It is shown that although matrix considerations lead to interesting insights, the basic trans fer properties of DLA cells cannot be described by a matrix. A more general notion of a transfer function is shown to be a simple and useful tool for formulating problems of particle dynamics in DLA. As an example, a focusing structure is proposed which works simultaneously for all electron phases.
Several methods have been proposed in the literature to improve Free Electron Laser output by transforming the electron phase-space before entering the FEL interaction region. By utilising `beam by design with novel undulators and other beam changing elements, the operating capability of FELs may be further usefully extended. This paper introduces two new such methods to improve output from electron pulses with large energy spreads and the results of simulations of these methods in the 1D limit are presented. Both methods predict orders of magnitude improvements to output radiation powers.
Laser powered dielectric structures achieve high-gradient particle acceleration by taking advantage of modern laser technology capable of producing electric fields in excess of 10GV/m. These fields can drive the bulk dielectric beyond its linear resp onse, and break the phase synchronicity between the accelerating field and the electrons. We show how control of the pulse dispersion can be used to compensate the effect of self-phase modulation and maximize the energy gain in the laser accelerator.In our experiment, a high brightness 8MeV e-beam is used to probe accelerating fields of 1.8GV/m in a grating-reset dielectric structure illuminated by a 45fs laser pulse with a fluence of 0.7J/cm$^2$.
The generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wake-field acceleration have strongly been promoted during the last deca des. Despite many advances in the understanding of fundamental physical phenomena, one largely unexplored issue is how the particle spins are influenced by the huge magnetic fields of plasma and, thus, how highly polarized beams can be produced. The realization of laser-plasma based accelerators for polarized beams is now being pursued as a joint effort of groups from Forschungszentrum Julich (Germany), University of Crete (Greece), and SIOM Shanghai (China) within the ATHENA consortium. As a first step, we have theoretically investigated and identified the mechanisms that influence the beam polarization in laser-plasma accelerators. We then carried out a set of Particle-in-cell simulations on the acceleration of electrons and proton beams from gaseous and foil targets. We could show that intense polarized beams may be produced if pre-polarized gas targets of high density are employed. In these proceedings we further present that the polarization of protons in HT and HCl gas targets is largely conserved during laser wake-field acceleration, even if the proton energies enter the multi-GeV regime. Such polarized sources for electrons, protons, deuterons and $^{3}$He ions are now being built in Julich. Proof-of-principle measurements at the (multi-)PW laser facilities PHELIX (GSI Darmstadt) and SULF (Shanghai) are in preparation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا