ترغب بنشر مسار تعليمي؟ اضغط هنا

Free Electron Lasers using `Beam by Design

135   0   0.0 ( 0 )
 نشر من قبل Brian McNeil WJ
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several methods have been proposed in the literature to improve Free Electron Laser output by transforming the electron phase-space before entering the FEL interaction region. By utilising `beam by design with novel undulators and other beam changing elements, the operating capability of FELs may be further usefully extended. This paper introduces two new such methods to improve output from electron pulses with large energy spreads and the results of simulations of these methods in the 1D limit are presented. Both methods predict orders of magnitude improvements to output radiation powers.



قيم البحث

اقرأ أيضاً

Plasma driven particle accelerators represent the future of compact accelerating machines and Free Electron Lasers are going to benefit from these new technologies. One of the main issue of this new approach to FEL machines is the design of the trans fer line needed to match of the electron-beam with the magnetic undulators. Despite the reduction of the chromaticity of plasma beams is one of the main goals, the target of this line is to be effective even in cases of beams with a considerable value of chromaticity. The method here explained is based on the code GIOTTO [1] that works using a homemade genetic algorithm and that is capable of finding optimal matching line layouts directly using a full 3D tracking code.
The beam energy spread at the entrance of undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependences of high harmonic micro-bunching in the high-gain ha rmonic generation (HGHG), echo-enabled harmonic generation (EEHG) and phase-merging enhanced harmonic generation (PEHG) schemes on the electron energy spread distribution are studied. Theoretical investigations and multi-dimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the performance of HGHG-FELs, while they almost have no influence on EEHG and PEHG schemes. A numerical example demonstrates that, with about 84keV RMS uniform and/or saddle slice energy spread, the 30th harmonic radiation can be directly generated by a single-stage seeding scheme for a soft x-ray FEL facility.
A model of a Free Electron Laser operating with an elliptically polarised undulator is presented. The equations describing the FEL interaction, including resonant harmonic radiation fields, are averaged over an undulator period and generate a general ised Bessel function scaling factor, similar to that of planar undulator FEL theory. Comparison between simulations of the averaged model with those of an unaveraged model show very good agreement in the linear regime. Two unexpected results were found. Firstly, an increased coupling to harmonics for elliptical rather than planar polarisarised undulators. Secondly, and thought to be unrelated to the undulator polarisation, a signficantly different evolution between the averaged and unaveraged simulations of the harmonic radiation evolution approaching FEL saturation.
364 - I. Agapov , G. Geloni , S. Tomin 2017
Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tun ing procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH cite{flash} to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH. We also discuss the potential of using machine learning and model-based techniques in tuning methods.
In this paper, we report results of simulations, in the framework of both EuPRAXIA cite{Walk2017} and EuPRAXIA@SPARC_LAB cite{Ferr2017} projects, aimed at delivering a high brightness electron bunch for driving a Free Electron Laser (FEL) by employin g a plasma post acceleration scheme. The boosting plasma wave is driven by a tens of SI{}{terawatt} class laser and doubles the energy of an externally injected beam up to GeV{1}. The injected bunch is simulated starting from a photoinjector, matched to plasma, boosted and finally matched to an undulator, where its ability to produce FEL radiation is verified to yield $O( um{e11})$ photons per shot at m{2.7}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا