ﻻ يوجد ملخص باللغة العربية
The question of suitability of transfer matrix description of electrons traversing grating-type dielectric laser acceleration (DLA) structures is addressed. It is shown that although matrix considerations lead to interesting insights, the basic transfer properties of DLA cells cannot be described by a matrix. A more general notion of a transfer function is shown to be a simple and useful tool for formulating problems of particle dynamics in DLA. As an example, a focusing structure is proposed which works simultaneously for all electron phases.
The notions of acceleration gradient and deflection gradient are generalized to phasor quantities (complex-valued functions) in the context of dielectric laser acceleration (DLA). It is shown that the electromagnetic forces imparted on a near-resonan
Laser powered dielectric structures achieve high-gradient particle acceleration by taking advantage of modern laser technology capable of producing electric fields in excess of 10GV/m. These fields can drive the bulk dielectric beyond its linear resp
Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology and medi
In this paper we discuss the possibility to generate and accelerate proton nanobeams in fully dielectric laser-driven accelerators (p-DLAs). High gradient on-chip optical-power dielectric laser accelerators (DLAs) could represent one of the most prom
Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. The 9-cell 1.3-GHz superconducting standing-wave accelerating RF cavity originally developed