ﻻ يوجد ملخص باللغة العربية
From the viewpoint of quantum walks, the Ihara zeta function of a finite graph can be said to be closely related to its evolution matrix. In this note we introduce another kind of zeta function of a graph, which is closely related to, as to say, the square of the evolution matrix of a quantum walk. Then we give to such a function two types of determinant expressions and derive from it some geometric properties of a finite graph. As an application, we illustrate the distribution of poles of this function comparing with those of the usual Ihara zeta function.
We connect the Grover walk with sinks to the Grover walk with tails. The survival probability of the Grover walk with sinks in the long time limit is characterized by the centered generalized eigenspace of the Grover walk with tails. The centered eig
We study a log-gas on a network (a finite, simple graph) confined in a bounded subset of a local field (i.e. R, C, Q_{p} the field of p-adic numbers). In this gas, a log-Coulomb interaction between two charged particles occurs only when the sites of
We construct spectral zeta functions for the Dirac operator on metric graphs. We start with the case of a rose graph, a graph with a single vertex where every edge is a loop. The technique is then developed to cover any finite graph with general ener
We construct concrete examples of time operators for both continuous and discrete-time homogeneous quantum walks, and we determine their deficiency indices and spectra. For a discrete-time quantum walk, the time operator can be self-adjoint if the ti
We describe some basic tools in the spectral theory of Schrodinger operator on metric graphs (also known as quantum graph) by studying in detail some basic examples. The exposition is kept as elementary and accessible as possible. In the later sectio