ترغب بنشر مسار تعليمي؟ اضغط هنا

An elementary introduction to quantum graphs

82   0   0.0 ( 0 )
 نشر من قبل Gregory Berkolaiko
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe some basic tools in the spectral theory of Schrodinger operator on metric graphs (also known as quantum graph) by studying in detail some basic examples. The exposition is kept as elementary and accessible as possible. In the later sections we apply these tools to prove some results on the count of zeros of the eigenfunctions of quantum graphs.



قيم البحث

اقرأ أيضاً

152 - G. Berkolaiko , T. Weyand 2012
We prove an analogue of the magnetic nodal theorem on quantum graphs: the number of zeros $phi$ of the $n$-th eigenfunction of the Schrodinger operator on a quantum graph is related to the stability of the $n$-th eigenvalue of the perturbation of the operator by magnetic potential. More precisely, we consider the $n$-th eigenvalue as a function of the magnetic perturbation and show that its Morse index at zero magnetic field is equal to $phi - (n-1)$.
324 - Yu. Higuchi , N. Konno , I. Sato 2014
From the viewpoint of quantum walks, the Ihara zeta function of a finite graph can be said to be closely related to its evolution matrix. In this note we introduce another kind of zeta function of a graph, which is closely related to, as to say, the square of the evolution matrix of a quantum walk. Then we give to such a function two types of determinant expressions and derive from it some geometric properties of a finite graph. As an application, we illustrate the distribution of poles of this function comparing with those of the usual Ihara zeta function.
We describe the spectral theory of the adjacency operator of a graph which is isomorphic to homogeneous trees at infinity. Using some combinatorics, we reduce the problem to a scattering problem for a finite rank perturbation of the adjacency operato r on an homogeneous tree. We developp this scattering theory using the classical recipes for Schrodinger operators in Euclidian spaces.
307 - Yusuke Higuchi , Etsuo Segawa , 2015
Given two Hilbert spaces, $mathcal{H}$ and $mathcal{K}$, we introduce an abstract unitary operator $U$ on $mathcal{H}$ and its discriminant $T$ on $mathcal{K}$ induced by a coisometry from $mathcal{H}$ to $mathcal{K}$ and a unitary involution on $mat hcal{H}$. In a particular case, these operators $U$ and $T$ become the evolution operator of the Szegedy walk on a graph, possibly infinite, and the transition probability operator thereon. We show the spectral mapping theorem between $U$ and $T$ via the Joukowsky transform. Using this result, we have completely detemined the spectrum of the Grover walk on the Sierpinski lattice, which is pure point and has a Cantor-like structure.
We consider two-dimensional Schroedinger operators with an attractive potential in the form of a channel of a fixed profile built along an unbounded curve composed of a circular arc and two straight semi-lines. Using a test-function argument with hel p of parallel coordinates outside the cut-locus of the curve, we establish the existence of discrete eigenvalues. This is a special variant of a recent result of Exner in a non-smooth case and via a different technique which does not require non-positive constraining potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا