ترغب بنشر مسار تعليمي؟ اضغط هنا

Relation between quantum walks with tails and quantum walks with sinks on finite graphs

93   0   0.0 ( 0 )
 نشر من قبل Etsuo Segawa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We connect the Grover walk with sinks to the Grover walk with tails. The survival probability of the Grover walk with sinks in the long time limit is characterized by the centered generalized eigenspace of the Grover walk with tails. The centered eigenspace of the Grover walk is the attractor eigenspace of the Grover walk with sinks. It is described by the persistent eigenspace of the underlying random walk whose support has no overlap to the boundaries of the graph and combinatorial flow in the graph theory.



قيم البحث

اقرأ أيضاً

We clarify that coined quantum walk is determined by only the choice of local quantum coins. To do so, we characterize coined quantum walks on graph by disjoint Euler circles with respect to symmetric arcs. In this paper, we introduce a new class of coined quantum walk by a special choice of quantum coins determined by corresponding quantum graph, called quantum graph walk. We show that a stationary state of quantum graph walk describes the eigenfunction of the quantum graph.
325 - Yu. Higuchi , N. Konno , I. Sato 2014
From the viewpoint of quantum walks, the Ihara zeta function of a finite graph can be said to be closely related to its evolution matrix. In this note we introduce another kind of zeta function of a graph, which is closely related to, as to say, the square of the evolution matrix of a quantum walk. Then we give to such a function two types of determinant expressions and derive from it some geometric properties of a finite graph. As an application, we illustrate the distribution of poles of this function comparing with those of the usual Ihara zeta function.
76 - Chusei Kiumi , Kei Saito 2020
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-de fect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).
151 - Chusei Kiumi , Kei Saito 2021
Localization is a characteristic phenomenon of space-inhomogeneous quantum walks in one dimension, where particles remain localized at their initial position. Eigenvectors of time evolution operators are deeply related to the amount of trapping. In t his paper, we introduce the analytical method for the eigenvalue problem using a transfer matrix to quantitatively evaluate localization by deriving the time-averaged limit distribution and reveal the condition of strong trapping.
In this paper, we explore quantum interference in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley-Hamilton theorem for characteristic polynomials and the Coulson-Rushbrooke pairing theorem f or alternant hydrocarbons, it is possible to derive a finite series expansion of the Greens function for electron transmission in terms of the odd powers of the vertex adjacency matrix or H{u}ckel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For non-alternant hydrocarbons, the finite Greens function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for non-alternants, from the cancellation of odd and even-length walk terms. We report some progress, but not a complete resolution of the problem of understanding the coefficients in the expansion of the Greens function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. And we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Greens function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا