ﻻ يوجد ملخص باللغة العربية
The recent detection of the primordial gravitational waves from the BICEP2 observation seems to be in tension with the upper bound on the amplitude of tensor perturbations from the PLANCK data. We consider a phenomenological model of inflation in which the microscopical properties of the inflationary fluid such as the equation of state $w$ or the sound speed $c_s$ jump in a sharp manner. We show that the amplitude of the scalar perturbations is controlled by a non-trivial combination of $w$ and $c_s$ before and after the phase transition while the tensor perturbations remains nearly intact. With an appropriate choice of the fluid parameters $w$ and $c_s$ one can suppress the scalar perturbation power spectrum on large scales to accommodate a large tensor amplitude with $r=0.2$ as observed by BICEP2 observation.
The scalar-tensor Dirac-Born-Infeld (DBI) inflation scenario provides a simple mechanism to reduce the large values of the boost factor associated with single field models with DBI action, whilst still being able to drive 60 efolds of inflation. Usin
Violation of parity symmetry in the gravitational sector, which manifests into unequal left and right circular polarization states of primordial gravitational waves, represents a way to test high-energy modifications to general relativity. In this pa
The Dirac-Born-Infeld (DBI) action has been widely studied as an interesting example of a model of k-inflation in which the sound speed of the cosmological perturbations differs from unity. In this article we consider a scalar-tensor theory in which
We construct ensembles of random scalar potentials for $N_f$ interacting scalar fields using non-equilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For $N_f={cal O}({rm few})$, these h
In this paper the scalar-tensor theory of gravity is assumed to describe the evolution of the universe and the gravitational scalar $phi$ is ascribed to play the role of inflaton. The theory is characterized by the specified coupling function $omega(