ﻻ يوجد ملخص باللغة العربية
Two-sample hypothesis testing for random graphs arises naturally in neuroscience, social networks, and machine learning. In this paper, we consider a semiparametric problem of two-sample hypothesis testing for a class of latent position random graphs. We formulate a notion of consistency in this context and propose a valid test for the hypothesis that two finite-dimensional random dot product graphs on a common vertex set have the same generating latent positions or have generating latent positions that are scaled or diagonal transformations of one another. Our test statistic is a function of a spectral decomposition of the adjacency matrix for each graph and our test procedure is consistent across a broad range of alternatives. We apply our test procedure to real biological data: in a test-retest data set of neural connectome graphs, we are able to distinguish between scans from different subjects; and in the {em C.elegans} connectome, we are able to distinguish between chemical and electrical networks. The latter example is a concrete demonstration that our test can have power even for small sample sizes. We conclude by discussing the relationship between our test procedure and generalized likelihood ratio tests.
Practical problems with missing data are common, and statistical methods have been developed concerning the validity and/or efficiency of statistical procedures. On a central focus, there have been longstanding interests on the mechanism governing da
We propose a Bayesian approach, called the posterior spectral embedding, for estimating the latent positions in random dot product graphs, and prove its optimality. Unlike the classical spectral-based adjacency/Laplacian spectral embedding, the poste
We propose a one-step procedure to estimate the latent positions in random dot product graphs efficiently. Unlike the classical spectral-based methods such as the adjacency and Laplacian spectral embedding, the proposed one-step procedure takes advan
Motivated by gene set enrichment analysis, we investigate the problem of combined hypothesis testing on a graph. We introduce a general framework to effectively use the structural information of the underlying graph when testing multivariate means. A
We develop a unified approach to hypothesis testing for various types of widely used functional linear models, such as scalar-on-function, function-on-function and function-on-scalar models. In addition, the proposed test applies to models of mixed t