ﻻ يوجد ملخص باللغة العربية
Practical problems with missing data are common, and statistical methods have been developed concerning the validity and/or efficiency of statistical procedures. On a central focus, there have been longstanding interests on the mechanism governing data missingness, and correctly deciding the appropriate mechanism is crucially relevant for conducting proper practical investigations. The conventional notions include the three common potential classes -- missing completely at random, missing at random, and missing not at random. In this paper, we present a new hypothesis testing approach for deciding between missing at random and missing not at random. Since the potential alternatives of missing at random are broad, we focus our investigation on a general class of models with instrumental variables for data missing not at random. Our setting is broadly applicable, thanks to that the model concerning the missing data is nonparametric, requiring no explicit model specification for the data missingness. The foundational idea is to develop appropriate discrepancy measures between estimators whose properties significantly differ only when missing at random does not hold. We show that our new hypothesis testing approach achieves an objective data oriented choice between missing at random or not. We demonstrate the feasibility, validity, and efficacy of the new test by theoretical analysis, simulation studies, and a real data analysis.
Missing data occur frequently in empirical studies in health and social sciences, often compromising our ability to make accurate inferences. An outcome is said to be missing not at random (MNAR) if, conditional on the observed variables, the missing
We study the identification and estimation of statistical functionals of multivariate data missing non-monotonically and not-at-random, taking a semiparametric approach. Specifically, we assume that the missingness mechanism satisfies what has been p
Two-sample hypothesis testing for random graphs arises naturally in neuroscience, social networks, and machine learning. In this paper, we consider a semiparametric problem of two-sample hypothesis testing for a class of latent position random graphs
We offer a natural and extensible measure-theoretic treatment of missingness at random. Within the standard missing data framework, we give a novel characterisation of the observed data as a stopping-set sigma algebra. We demonstrate that the usual m
Classical semiparametric inference with missing outcome data is not robust to contamination of the observed data and a single observation can have arbitrarily large influence on estimation of a parameter of interest. This sensitivity is exacerbated w