ﻻ يوجد ملخص باللغة العربية
Regions of rapid variation in the internal structure of a star are often referred to as acoustic glitches since they create a characteristic periodic signature in the frequencies of p modes. Here we examine the localized disturbance arising from the helium second ionization zone in red giant branch and clump stars. More specifically, we determine how accurately and precisely the parameters of the ionization zone can be obtained from the oscillation frequencies of stellar models. We use models produced by three different generation codes that not only cover a wide range of stages of evolution along the red giant phase but also incorporate different initial helium abundances. We discuss the conditions under which such fits robustly and accurately determine the acoustic radius of the second ionization zone of helium. The determined radii of the ionization zones as inferred from the mode frequencies were found to be coincident with the local maximum in the first adiabatic exponent described by the models, which is associated with the outer edge of the second ionization zone of helium. Finally, we consider whether this method can be used to distinguish stars with different helium abundances. Although a definite trend in the amplitude of the signal is observed any distinction would be difficult unless the stars come from populations with vastly different helium abundances or the uncertainties associated with the fitted parameters can be reduced. However, application of our methodology could be useful for distinguishing between different populations of red giant stars in globular clusters, where distinct populations with very different helium abundances have been observed.
The space-borne missions CoRoT and Kepler have revealed numerous mixed modes in red-giant stars. These modes carry a wealth of information about red-giant cores, but are of limited use when constraining rapid structural variations in their envelopes.
Determining the ages of red-giant stars is a key problem in stellar astrophysics. One of the difficulties in this determination is to know the evolutionary state of the individual stars -- i.e. have they started to burn Helium in their cores? That is
We present Li, Na, Al and Fe abundances of 199 lower red giant branch stars members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ~ 1 de
We have analyzed 18 quarters of long-cadence data of KIC 9145955 provided by emph{Kepler}, and extracted 61 oscillation frequencies from these high precision photometric data. The oscillation frequencies include 7 $l = 0$ modes, 44 $l = 1$ modes, 7 $
Detailed understanding of stellar physics is essential towards a robust determination of stellar properties (e.g. radius, mass, and age). Among the vital input physics used in the modelling of solar-type stars which remain poorly constrained, is the