ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Method for the Asteroseismic Determination of the Evolutionary State of Red-Giant Stars

62   0   0.0 ( 0 )
 نشر من قبل Sarbani Basu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Determining the ages of red-giant stars is a key problem in stellar astrophysics. One of the difficulties in this determination is to know the evolutionary state of the individual stars -- i.e. have they started to burn Helium in their cores? That is the topic of this paper. Asteroseismic data provide a route to achieving this information. What we present here is an highly autonomous way of determining the evolutionary state from an analysis of the power spectrum of the light curve. The method is fast and efficient and can provide results for a large number of stars. It uses the structure of the dipole-mode oscillations, which have a mixed character in red-giant stars, to determine some measures that are used in the categorisation. It does not require that all the individual components of any given mode be separately characterised. Some 6604 red giant stars have been classified. Of these 3566 are determined to be on the red-giant branch, 2077 are red-clump and 439 are secondary-clump stars. We do not specifically identify the low metallicity, horizontal-branch stars. The difference between red-clump and secondary-clump stars is dependent on the manner in which Helium burning is first initiated. We discuss that the way the boundary between these classifications is set may lead to mis-categorisation in a small number of stars. The remaining 522 stars were not classified either because they lacked sufficient power in the dipole modes (so-called depressed dipole modes) or because of conflicting values in the parameters.

قيم البحث

اقرأ أيضاً

The internal working of low-mass stars is of great significance to both the study of stellar structure and the history of the Milky Way. Asteroseismology has the power to directly sense the internal structure of stars and allows for the determination of the evolutionary state -- i.e. has helium burning commenced or is the energy generated only by the fusion in the hydrogen-burning shell? We use observational data from red-giant stars in a combination (known as APOKASC) of asteroseismology (from the textit{Kepler} mission) and spectroscopy (from SDSS/APOGEE). The new feature of the analysis is that the APOKASC evolutionary state determination is based on the comparison of diverse approaches to the investigation of the frequency-power spectrum. The high level of agreement between the methods is a strong validation of the approaches. Stars for which there is not a consensus view are readily identified. The comparison also facilitates the identification of unusual stars including those that show evidence for very strong coupling between p and g cavities. The comparison between the classification based on the spectroscopic data and asteroseismic data have led to a new value for the statistical uncertainty in APOGEE temperatures. These consensus evolutionary states will be used as an input for methods that derive masses and ages for these stars based on comparison of observables with stellar evolutionary models (`grid-based modeling) and as a training set for machine-learning and other data-driven methods of evolutionary state determination
Regions of rapid variation in the internal structure of a star are often referred to as acoustic glitches since they create a characteristic periodic signature in the frequencies of p modes. Here we examine the localized disturbance arising from the helium second ionization zone in red giant branch and clump stars. More specifically, we determine how accurately and precisely the parameters of the ionization zone can be obtained from the oscillation frequencies of stellar models. We use models produced by three different generation codes that not only cover a wide range of stages of evolution along the red giant phase but also incorporate different initial helium abundances. We discuss the conditions under which such fits robustly and accurately determine the acoustic radius of the second ionization zone of helium. The determined radii of the ionization zones as inferred from the mode frequencies were found to be coincident with the local maximum in the first adiabatic exponent described by the models, which is associated with the outer edge of the second ionization zone of helium. Finally, we consider whether this method can be used to distinguish stars with different helium abundances. Although a definite trend in the amplitude of the signal is observed any distinction would be difficult unless the stars come from populations with vastly different helium abundances or the uncertainties associated with the fitted parameters can be reduced. However, application of our methodology could be useful for distinguishing between different populations of red giant stars in globular clusters, where distinct populations with very different helium abundances have been observed.
Transport of angular momentum in stellar interiors is currently not well understood. Asteroseismology can provide us with estimates of internal rotation of stars and thereby advances our understanding of angular momentum transport. We can measure cor e-rotation rates in red-giant stars and we can place upper bounds on surface-rotation rates using measurements of dipole ($l=1$) modes. Here, we aim to determine the theoretical sensitivity of modes of different spherical degree towards the surface rotation. Additionally, we aim to identify modes that can potentially add sensitivity at intermediate radii. We used asteroseismic rotational
59 - C. Liu , G. Ruchti , S. Feltzing 2017
The study of the Milky Way relies on our ability to interpret the light from stars correctly. This calls for a reinvestigation of how reliably we can determine, e.g., iron abundances in such stars and how well they reproduce those of dwarf stars. Her e we explore robust ways to determine the iron content of metal-rich giant stars. We aim to understand what biases and shortcomings widely applied methods suffer from. In this study we are mainly concerned with standard methods to analyse stellar spectra. This includes the analysis of individual lines to determine stellar parameters, analysis of the broad wings of certain lines (e.g., H$alpha$ and calcium lines) to determine effective temperature and surface gravity for the stars. For NGC 6528 we find that [Fe/H] = $+0.04$ dex with a scatter of $sigma=0.07$ dex, which gives an error in the derived mean abundance of 0.02 dex. Our work has two important conclusions for analysis of metal-rich red giant branch stars. 1) For spectra with S/N below about 35 per reduced pixel [Fe/H] become too high, 2) Determination of $T_{rm eff}$ using the wings of the H$alpha$ line results in [Fe/H] values about 0.1 dex higher than if excitational equilibrium is used. The last conclusion is perhaps not surprising as we expect NLTE effect to become more prominent in cooler stars and we can not use the the wings of the H$alpha$ line to determine $T_{rm eff}$ for the cool stars in our sample. We therefore recommend that in studies of metal-rich red giant stars care needs to be taken to obtain sufficient calibration data in order to be able to also use the cooler stars.
We present a method for isolating a clean sample of red giant stars in the outerregions of the Andromeda spiral galaxy (M31) from an ongoing spectroscopic survey using the DEIMOS instrument on the Keck 10-m telescope. The survey aims to study the kin ematics, global structure, substructure, and metallicity of M31s halo. Although most of our spectroscopic targets were photometrically screened to reject foreground Milky Way dwarf star contaminants, the latter class of objects still constitutes a substantial fraction of the observed spectra in the sparse outer halo. Our likelihood-based method for isolating M31 red giants uses five criteria: (1) radial velocity, (2) photometry in the intermediate-width DDO51 band to measure the strength of the MgH/Mgb absorption features, (3) strength of the Na I 8190A absorption line doublet, (4) location within an (I, V-I) color-magnitude diagram, and (5) comparison of photometric (CMD-based) versus spectroscopic (Ca II 8500A triplet-based) metallicity estimates. We also discuss K I and TiO diagnostics for giant/dwarf separation that might be useful in future analyses. Training sets consisting of definite M31 red giants and Galactic dwarf stars are used to derive empirical probabilitydistribution functions for each diagnostic. These functions are used to calculate the likelihood that a given star is a red giant in M31 versus a Milky Way dwarf. By applying this diagnostic method to our spectroscopic data set, we isolate 40 M31 red giants beyond a projected distance of R = 60 kpc from the galaxys center, including three out at R ~ 165 kpc. The ability to identify individual M31 red giants gives us an unprecedented level of sensitivity in studying the properties of the galaxys outer halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا