ﻻ يوجد ملخص باللغة العربية
We have analyzed 18 quarters of long-cadence data of KIC 9145955 provided by emph{Kepler}, and extracted 61 oscillation frequencies from these high precision photometric data. The oscillation frequencies include 7 $l = 0$ modes, 44 $l = 1$ modes, 7 $l = 2$ modes, and 3 $l = 3$ modes. We identify $l = 0$ modes as p modes and $l = 2$ modes as p-dominated modes. For $l = 1$ modes, all of them are identified as mixed modes. These mixed modes can be used to determine the size of the helium core. We conduct a series of asteroseismic models and the size of the helium core is determined to be $M_{rm He}$ = 0.210 $pm$ 0.002 $M_{odot}$ and $R_{rm He}$ = 0.0307 $pm$ 0.0002 $R_{odot}$. Furthermore, we find that only the acoustic radius $tau_{0}$ can be precisely determined with the asteroseismic method independently. The value of $tau_{0}$ is determined to be 0.494 $pm$ 0.001 days. By combining asteroseismic results and spectroscopic observations, we obtain the best-fitting model. The physical parameters of this model are $M$ = 1.24 $M_{odot}$, $Z$ = 0.009, $alpha$ = 2.0, $T_{rm eff}$ = 5069 K, $log g$ = 3.029, $R$ = 5.636 $R_{odot}$, and $L$ = 18.759 $L_{odot}$. In addition, we think that the observed frequency F39 (96.397 $mu$Hz) is more appropriate to be identified as a mixed mode of the most p-dominated.
All evolved stars with masses $M_starlesssim 2M_odot$ undergo a helium(He)-core flash at the end of their first stage as a giant star. Although theoretically predicted more than 50 years ago, this core-flash phase has yet to be observationally probed
Regions of rapid variation in the internal structure of a star are often referred to as acoustic glitches since they create a characteristic periodic signature in the frequencies of p modes. Here we examine the localized disturbance arising from the
The ratios $r_{01}$ and $r_{10}$ of small to large separations of KIC 2837475 primarily exhibit an increase behavior in the observed frequency range. The calculations indicate that only the models with overshooting parameter $delta_{rm ov}$ between a
Transport of angular momentum in stellar interiors is currently not well understood. Asteroseismology can provide us with estimates of internal rotation of stars and thereby advances our understanding of angular momentum transport. We can measure cor
We present results of an asteroseismic study on the $gamma$ Dor type {it Kepler} target KIC,6462033. {it Kepler} photometry is used to derive the frequency content and principal modes. High-dispersion ground-based spectroscopy is also carried out in