ترغب بنشر مسار تعليمي؟ اضغط هنا

The Radio Light Curve of the Gamma-Ray Nova in V407 Cyg: Thermal Emission from the Ionized Symbiotic Envelope, Devoured from Within by the Nova Blast

164   0   0.0 ( 0 )
 نشر من قبل Laura Chomiuk
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array and spanning 1-45 GHz and 17-770 days following discovery. This nova---the first ever detected in gamma rays---shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grew as the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass loss rate for the Mira wind of Mdot_w ~ 10^-6 M_sun/yr. We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of >~20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.



قيم البحث

اقرأ أيضاً

117 - S. Orlando , J.J. Drake 2011
(Abridged) The symbiotic-like binary Mira and nova V407 Cyg was observed in outburst on March 2010 and monitored in several wavelength bands. Here we report on multi-dimensional hydrodynamic simulations describing the 2010 outburst of V407 Cyg, explo ring the first 60 days of evolution. The model takes into account thermal conduction and radiative cooling; the pre-explosion system conditions included the companion star and a circumbinary density enhancement. The simulations showed that the blast and the ejecta distribution are both aspherical due to the inhomogeneous circumstellar medium in which they expand; in particular they are significantly collimated in polar directions (producing a bipolar shock morphology) if the circumstellar envelope is characterized by an equatorial density enhancement. The blast is partially shielded by the Mira companion, producing a wake with dense and hot post-shock plasma on the rear side of the companion star; most of the X-ray emission produced during the evolution of the blast arises from this plasma structure. The observed X-ray lightcurve can be reproduced, assuming values of outburst energy and ejected mass similar to those of RS Oph and U Sco, if a circumbinary gas density enhancement is included in the model. In this case, the 2010 blast propagated through a circumbinary gas density enhancement with radius of the order of 40 AU and gas density approx 10^6 cm^{-3} and the mass of ejecta in the outburst was M_{ej} approx 2times 10^{-7} M_{odot} with an explosion energy E_{0} approx 2times 10^{44} erg. Alternatively, the model can produce a similar X-ray lightcurve without the need of a circumbinary gas density enhancement only if the outburst energy and ejected mass were similar to those at the upper end of ranges for classical novae, namely M_{ej} approx 5times 10^{-5} M_{odot} and E_{0} approx 5times 10^{46} erg.
The nova outburst experienced in 2010 by the symbiotic binary Mira V407 Cyg has been extensively studied at optical and infrared wavelengths with both photometric and spectroscopic observations. This outburst, reminiscent of similar events displayed by RS Oph, can be described as a very fast He/N nova erupting while being deeply embedded in the dense wind of its cool giant companion. The hard radiation from the initial thermonuclear flash ionizes and excites the wind of the Mira over great distances (recombination is observed on a time scale of 4 days). The nova ejecta is found to progressively decelerate with time as it expands into the Mira wind. This is deduced from line widths which change from a FWHM of 2760 km/s on day +2.3 to 200 km/s on day +196. The wind of the Mira is massive and extended enough for an outer neutral and unperturbed region to survive at all outburst phases.
We report on very high energy (E > 100 GeV) gamma-ray observations of V407 Cygni, a symbiotic binary that underwent a nova outburst producing 0.1-10 GeV gamma rays during 2010 March 10-26. Observations were made with the Very Energetic Radiation Imag ing Telescope Array System during 2010 March 19-26 at relatively large zenith angles, due to the position of V407 Cyg. An improved reconstruction technique for large zenith angle observations is presented and used to analyze the data. We do not detect V407 Cygni and place a differential upper limit on the flux at 1.6 TeV of 2.3 times 10^(-12) erg cm^(-2) s^(-1) (at the 95% confidence level). When considered jointly with data from Fermi-LAT, this result places limits on the acceleration of very high energy particles in the nova.
Evidence for shocks in nova outflows include (1) multiple velocity components in the optical spectra; (2) keV X-ray emission weeks to months after the outburst; (3) early radio flare on timescales of months, in excess of that predicted from the freel y expanding photo-ionized gas; and (4) ~ GeV gamma-rays. We present a 1D model for the shock interaction between the fast nova outflow and a dense external shell (DES) and its associated thermal X-ray, optical, and radio emission. The forward shock is radiative initially when the density of shocked gas is highest, at which times radio emission originates from the dense cooling layer immediately downstream of the shock. The radio light curve is characterized by sharper rises to maximum and later peak times at progressively lower frequencies, with a peak brightness temperature that is approximately independent of frequency. We apply our model to the recent gamma-ray classical nova V1324 Sco, obtaining an adequate fit to the early radio maximum for reasonable assumptions about the fast nova outflow and assuming the DES possesses a velocity ~1e3 km/s and mass ~ 2e-4 M_sun; the former is consistent with the velocities of narrow line absorption systems observed previously in nova spectra, while the total ejecta mass of the DES and fast outflow is consistent with that inferred independently by modeling the late radio peak. Rapid evolution of the early radio light curves require the DES possess a steep outer density profile, which may indicate that the onset of mass loss from the white dwarf was rapid, providing indirect evidence that the DES was expelled by the thermonuclear runaway event. Reprocessed X-rays from the shock absorbed by the DES at early times may contribute significantly to the optical/UV emission, which we speculate is responsible for the previously unexplained `plateaus and secondary maxima in nova optical light curves.
85 - Gavin Ramsay 2016
Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its second optical outburst since 1850. This recent outburst was of much shorter duration and lower amplitude than the earlier eruption, and it contained multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We report Swift X-ray and UV observations of AG Peg made between June 2015 and January 2016. The X-ray flux was markedly variable on a time scale of days, particularly during four days near optical maximum, when the X-rays became bright and soft. This strong X-ray variability continued for another month, after which the X-rays hardened as the optical flux declined. The UV flux was high throughout the outburst, consistent with quasi-steady shell burning on the white dwarf. Given that accretion disks around white dwarfs with shell burning do not generally produce detectable X-rays (due to Compton-cooling of the boundary layer), the X-rays probably originated via shocks in the ejecta. As the X-ray photo-electric absorption did not vary significantly, the X-ray variability may directly link to the properties of the shocked material. AG Pegs transition from a slow symbiotic nova (which drove the 1850 outburst) to a classical symbiotic star suggests that shell burning in at least some symbiotic stars is residual burning from prior novae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا