ترغب بنشر مسار تعليمي؟ اضغط هنا

High-energy spin and charge excitations in electron-doped copper oxide superconductors

216   0   0.0 ( 0 )
 نشر من قبل Kenji Ishii
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we combine x-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic x-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone center and deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the {Gamma}-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin-excitations (paramagnons) recently observed in hole-doped compounds even at high doping-levels.



قيم البحث

اقرأ أيضاً

High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importanc e of out-of-plane charge dynamics, believed to be incoherent in the normal state, yet lacking a comprehensive characterization in energy-momentum space. Here, we use resonant inelastic x-ray scattering (RIXS) with polarization analysis to uncover the pure charge character of a recently discovered collective mode in electron-doped cuprates. This mode disperses along both the in- and, importantly, out-of-plane directions, revealing its three dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the CuO2 plane distance rather than the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction drives the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought acoustic plasmon, predicted for layered systems and argued to play a substantial role in mediating high temperature superconductivity.
88 - Bingying Pan , Yao Shen , Die Hu 2016
Heavily electron-doped iron-selenide (HEDIS) high-transition-temperature (high-$T_{rm{c}}$) superconductors, which have no hole Fermi pockets, but have a notably high $T_{rm{c}}$, have challenged the prevailing $s$$_pm$ pairing scenario originally pr oposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in HEDIS remains unclear. Here, we used neutron scattering to study the spin excitations of the HEDIS material Li$_{0.8}$Fe$_{0.2}$ODFeSe ($T_{rm{c}}$ = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding ($pi$, $pi$) at $sim$ 21 meV. As the energy increased, the spin excitations assumed a diamond shape, and they dispersed outward until the energy reached $sim$ 60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near ($pi$, $pi$) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high $T_{rm{c}}$ in these materials.
High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconduct ivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.
High-temperature superconductivity (HTSC) mysteriously emerges upon doping holes or electrons into insulating copper oxides with antiferromagnetic (AFM) order. It has been thought that the large energy scale of magnetic excitations, compared to phono n energies for example, lies at the heart of an electronically-driven superconducting phase at high temperatures. However, despite extensive studies, little information is available for comparison of high-energy magnetic excitations of hole- and electron-doped superconductors to assess a possible correlation with the respective superconducting transition temperatures. Here, we use resonant inelastic x-ray scattering (RIXS) at the Cu L3-edge to reveal high-energy collective excitations in the archetype electron-doped cuprate Nd2-xCexCuO4 (NCCO). Surprisingly, despite the fact that the spin stiffness is zero and the AFM correlations are short-ranged, magnetic excitations harden significantly across the AFM-HTSC phase boundary, in stark contrast with the hole-doped cuprates. Furthermore, we find an unexpected and highly dispersive mode in superconducting NCCO that is undetected in the hole-doped compounds, which emanates from the zone center with a characteristic energy comparable to the pseudogap, and may signal a quantum phase distinct from superconductivity. The uncovered asymmetry in the high-energy collective excitations with respect to hole and electron doping provides additional constraints for modeling the HTSC cuprates.
108 - Heshan Yu , Ge He , Ziquan Lin 2015
Emergency of superconductivity at the instabilities of antiferromagnetism (AFM), spin/charge density waves has been widely recognized in unconventional superconductors. In copper-oxide superconductors, spin fluctuations play a predominant role in ele ctron pairing with electron dopants yet composite orders veil the nature of superconductivity for hole-doped family. However, in electron-doped ones the ending point of AFM is still in controversy for different probes or its sensitivity to oxygen content. Here, by carefully tuning the oxygen content, a systematic study of Hall signal and magnetoresistivity up to 58 Tesla on optimally doped La2-xCexCuO4+-{delta} (x = 0.10) thin films identifies two characteristic temperatures at 62.5+-7.5 K and 25+-5 K. The former is quite robust whereas the latter becomes flexible with increasing magnetic field, thereby linked to two- and three-dimensional AFM, evident from the multidimensional phase diagram as a function of oxygen as well as Ce dopants. Consequently, the observation of extended AFM phase in contrast to {mu}SR probe corroborates an elevated critical doping in field, providing an unambiguous picture to understand the interactions between AFM and superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا