ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor

230   0   0.0 ( 0 )
 نشر من قبل Jun Zhao
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.



قيم البحث

اقرأ أيضاً

438 - Yong Hu , Xiang Chen , S.-T. Peng 2019
The pseudogap, d-wave superconductivity and electron-boson coupling are three intertwined key ingredients in the phase diagram of the cuprates. Sr$_2$IrO$_4$ is a 5d-electron counterpart of the cuprates in which both the pseudogap and a d-wave instab ility have been observed. Here, we report spectroscopic evidence for the presence of the third key player in electron-doped Sr$_2$IrO$_4$: electron-boson coupling. A kink in nodal dispersion is observed with an energy scale of ~50 meV. The strength of the kink changes with doping, but the energy scale remains the same. These results provide the first noncuprate platform for exploring the relationship between the pseudogap, d-wave instability and electron-boson coupling in doped Mott insulators.
Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. U nconventional superconductivity is predicted in single layer graphene where the electrons pair with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing single layer graphene on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in single layer graphene. The realization of unconventional superconductivity in single layer graphene offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.
206 - K. Ishii , M. Fujita , T. Sasaki 2014
The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we comb ine x-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic x-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone center and deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the {Gamma}-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin-excitations (paramagnons) recently observed in hole-doped compounds even at high doping-levels.
140 - Kui Jin , Wei Hu , Beiyi Zhu 2015
Since the discovery of n-type copper oxide superconductors, the evolution of electron- and hole-bands and its relation to the superconductivity have been seen as a key factor in unveiling the mechanism of high-Tc superconductors. So far, the occurren ce of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to +2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation between electrons and holes is commonly expected. Our findings paint the picture where Coulomb repulsion plays an important role in the evolution of the electronic states in n-type cuprate superconductors.
85 - W.M.Li , J.F.Zhao , L.P.Cao 2018
The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics.High Tc cuprates crystallize into layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high Tc cuprates are elongated along the c axis, leading to a 3dx2-y2 orbital at the top of the band structure wherein the doped holes reside.This scenario gives rise to two dimensional characteristics in high Tc cuprates that favor d wave pairing symmetry. Here we report superconductivity in a cuprate Ba2CuO4-y wherein the local octahedron is in a very exceptional compressed version.The Ba2CuO4-y compound was synthesized at high pressure at high temperatures, and shows bulk superconductivity with critical temperature Tc above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the Tc for the isostructural counterparts based on classical La2CuO4. X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron the 3d3z2-r2 orbital will be lifted above the 3dx2-y2 orbital, leading to significant three dimensional nature in addition to the conventional 3dx2-y2 orbital. This work sheds important new light on advancing our comprehensive understanding of the superconducting mechanism of high Tc in cuprate materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا