ترغب بنشر مسار تعليمي؟ اضغط هنا

Importance of relativistic effects in electronic structure and thermopower calculations for Mg2Si, Mg2Ge and Mg2Sn

51   0   0.0 ( 0 )
 نشر من قبل Kamil Kutorasinski
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical study of the influence of the relativistic effects on electronic band structure and thermopower of Mg2X(X= Si, Ge, Sn) semiconductors. The full potential Korringa-Kohn-Rostoker (KKR) method is used, and the detailed comparison between the fully relativistic and semi-relativistic electronic structure features is done. We show that the spin-orbit (S-O) interaction splits the valence band structure at Gamma point in good agreement with the experimental data, and this effect strongly depends on X atom. The S-O modifications of the topology of the Gamma-centered hole-like Fermi surface pockets lead to a change in electron transport properties, which are investigated using the Boltzmann approach. In addition, the simple and efficient method is presented for the calculation of density of states effective mass m*, and then used to examine the impact of relativistic effects on m*. It is found that S-O coupling of the valence bands reduces effective mass and therefore significantly lowers the thermopower, primarily in Mg2Sn, but also in Mg2Ge. A detrimental influence of the S-O interaction on thermoelectric performance of p-type Mg2X is analyzed in function of temperature (10-900 K) and carrier concentration (10^18-10^22 cm-3). Interestingly, similar calculations in n-type Mg2X, show negligible effect of the S-O interaction on lowest conduction bands and consequently also on the Seebeck coefficient.


قيم البحث

اقرأ أيضاً

Density functional theory (DFT) has been used as an important tool for studying activity of oxygen reduction reaction (ORR) catalysts. The dispersion effects, which are not encountered in many of the previous DFT studies for periodic Pt(111), are scr utinized for their role in predicting ORR activity on Pt (111) surface. Spin orbit coupling is employed to account for relativistic effects expected for heavy metal platinum, which has not been addressed in any of the previous studies on Pt(111). Adsorption behavior of intermediates and free energy changes of elementary reactions of ORR are analyzed with commonly used dispersion methods. A cumulative enhancement of ORR energetics and a maximum of 25% improvement in theoretical limiting potential are observed. The study illustrates the importance of consideration of these effects for better prediction of electrocatalytic activity for platinum based catalysts.
152 - D. R. Bowler , T. Miyazaki 2011
Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, wh ich rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed.
We describe 27Al NMR experiments on Ba8AlxGe46-x type-I clathrates coupled with ab initio computational studies. For x=16, calculated spectra determined by the ab initio results gave good agreement with the measurements, with best-fitting configurati ons also corresponding to the computed lowest-energy atomic arrangements. Analysis of the NMR results showed that a distribution of Knight shifts dominates the central portion of the line. Computational results demonstrate that this stems from the large variation of carrier density on different sites. Al-deficient samples with x=12 and 13 exhibited a split central NMR peak, signaling two main local environments for Al ions, which we connected to the presence of vacancies. Modeling of the wide-line spectrum for x=12 indicates a configuration with more Al on the 24k site than for x=16. The results indicate the importance of nonbonding hybrids adjacent to the vacancies in the electronic structure near EF. We also address the static distortions from Pm-3n symmetry in these structures.
Thermopower (S) for anatase TiO2 epitaxial films (n3D: 1E17-1E21 /cm3) and the gate voltage (Vg) dependence of S for thin film transistors (TFTs) based on TiO2 films were investigated to clarify the electronic density of states (DOS) around the condu ction band bottom. The slope of the |S|-log n3D plots was -20 {mu}V/K, which is an order magnitude smaller than that of semiconductors (-198 {mu}V/K), and the |S| values for the TFTs increased with Vg in the low Vg region, suggesting that the extra tail states are hybridized with the original conduction band bottom.
The properties of newly discovered polar ScFeO3 with magnetic ordering are examined using Ab initio calculations and symmetry mode analysis. The GGA+U calculation confirms the stability of polar R3c Phase in ScFeO3 and the pressure induced phase tran sition to non-polar Pnma phase. Octahedron tilting and structural properties as a function of applied pressure have been analyzed. The origin of polar phase is associated with instability of non-polar R-3c phase and group theory using the symmetry mode analysis has been applied to understand this instability as well as the spontaneous polarization of polar R3c phase. The magnetic phase transition shows G-type AFM ordering of Fe3+ ion within Goodenough-Kanamori theory and the possibility of magnetic spin structure has been analyzed by using energy analysis including spin canting possibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا