ﻻ يوجد ملخص باللغة العربية
Starting from the linear sigma model with constituent quarks we derive the chiral fluid dynamics where hydrodynamic equations for the quark fluid are coupled to the equation of motion for the order-parameter field. In a static system at thermal equilibrium this model leads to a chiral phase transition which, depending on the choice of the quark-meson coupling constant, could be a crossover or a first order one. We investigate the stability of the chiral fluid in the static and expanding backgrounds by considering the evolution of perturbations with respect to the mean-field solution. In the static background the spectrum of plane-wave perturbations consists of two branches, one corresponding to the sound waves and another to the sigma-meson excitations. For large couplings these two branches cross and the excitation spectrum acquires exponentially growing modes. The stability analysis is also done for the Bjorken-like background solution by explicitly solving the time-dependent differential equation for perturbations in the eta-space. In this case the growth rate of unstable modes is significantly reduced.
We investigate the causality and the stability of the relativistic viscous magneto-hydrodynamics in the framework of the Israel-Stewart (IS) second-order theory, and also within a modified IS theory which incorporates the effect of magnetic fields in
We derive the equations of second order dissipative fluid dynamics from the relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart. We present a frame independent calculation of all first- and second-order terms and their
In this work we present a general derivation of relativistic fluid dynamics from the Boltzmann equation using the method of moments. The main difference between our approach and the traditional 14-moment approximation is that we will not close the fl
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame
The fluid dynamics of a relativistic fireball with longitudinal and transverse expansion is described using a background-fluctuation splitting. Symmetry representations of azimuthal rotations and longitudinal boosts are used for a classification of i