ﻻ يوجد ملخص باللغة العربية
We investigate the causality and the stability of the relativistic viscous magneto-hydrodynamics in the framework of the Israel-Stewart (IS) second-order theory, and also within a modified IS theory which incorporates the effect of magnetic fields in the relaxation equations of the viscous stress. We compute the dispersion relation by perturbing the fluid variables around their equilibrium values. In the ideal magnetohydrodynamics limit, the linear dispersion relation yields the well-known propagating modes: the Alfven and the magneto-sonic modes.In the presence of bulk viscous pressure, the causality bound is found to be independent of the magnitude of the magnetic field. The same bound also remains true, when we take the full non-linear form of the equation using the method of characteristics. In the presence of shear viscous pressure, the causality bound is independent of the magnitude of the magnetic field for the two magneto-sonic modes. The causality bound for the shear-Alfven modes, however, depends both on the magnitude and the direction of the propagation. For modified IS theory in the presence of shear viscosity, new non-hydrodynamic modes emerge but the asymptotic causality condition is the same as that of IS. In summary, although the magnetic field does influence the wave propagation in the fluid, the study of the stability and asymptotic causality conditions in the fluid rest frame shows that the fluid remains stable and causal given that they obey certain asymptotic causality condition.
We derive the relativistic non-resistive, viscous second-order magnetohydrodynamic equations for the dissipative quantities using the relaxation time approximation. The Boltzmann equation is solved for a system of particles and antiparticles using Ch
Starting from the linear sigma model with constituent quarks we derive the chiral fluid dynamics where hydrodynamic equations for the quark fluid are coupled to the equation of motion for the order-parameter field. In a static system at thermal equil
The stability and causality of the Landau-Lifshitz theory and the Israel-Stewart type causal dissipative hydrodynamics are discussed. We show that the problem of acausality and instability are correlated in relativistic dissipative hydrodynamics and
Heavy-ion collisions at center-of-mass energies between 1 and 100 GeV/nucleon are essential to understand the phase diagram of QCD and search for its critical point. At these energies the net baryon density of the system can be high, and simulating i
We consider causal higher order theories of relativistic viscous hydrodynamics in the limit of one-dimensional boost-invariant expansion and study the associated dynamical attractor. We obtain evolution equations for the inverse Reynolds number as a