ﻻ يوجد ملخص باللغة العربية
We prove sharp lower bounds on the spectral gap of 1-dimensional Schrodinger operators with Robin boundary conditions for each value of the Robin parameter. In particular, our lower bounds apply to single-well potentials with a centered transition point. This result extends work of Cheng et al. and Horvath in the Neumann and Dirichlet endpoint cases to the interpolating regime. We also build on recent work by Andrews, Clutterbuck, and Hauer in the case of convex and symmetric single-well potentials. In particular, we show the spectral gap is an increasing function of the Robin parameter for symmetric potentials.
We consider a Schrodinger operator with complex-valued potentials on the line. The operator has essential spectrum on the half-line plus eigenvalues (counted with algebraic multiplicity) in the complex plane without the positive half-line. We determi
We study the one-dimensional Schrodinger operators $$ S(q)u:=-u+q(x)u,quad uin mathrm{Dom}left(S(q)right), $$ with $1$-periodic real-valued singular potentials $q(x)in H_{operatorname{per}}^{-1}(mathbb{R},mathbb{R})$ on the Hilbert space $L_{2}left(m
We consider the Schrodinger operator $H_{eta W} = -Delta + eta W$, self-adjoint in $L^2({mathbb R}^d)$, $d geq 1$. Here $eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. We study the asymptotic behav
The compression of the resolvent of a non-self-adjoint Schrodinger operator $-Delta+V$ onto a subdomain $Omegasubsetmathbb R^n$ is expressed in a Krein-Naimark type formula, where the Dirichlet realization on $Omega$, the Dirichlet-to-Neumann maps, a
We study the direct and inverse scattering problem for the one-dimensional Schrodinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and