ﻻ يوجد ملخص باللغة العربية
Presented in this paper is a proof-of-concept for a new approach to single electron pumping based on a Single Atom Transistor (SAT). By charge pumping electrons through an isolated dopant atom in silicon, precise currents of up to 160 pA at 1 GHz are generated, even if operating at 4.2 K, with no magnetic field applied, and only when one barrier is addressed by sinusoidal voltage cycles.
The Kondo effect has been observed in a single gate-tunable atom. The measurement device consists of a single As dopant incorporated in a Silicon nanostructure. The atomic orbitals of the dopant are tunable by the gate electric field. When they are t
We demonstrate single-electron pumping in a gate-defined carbon nanotube double quantum dot. By periodic modulation of the potentials of the two quantum dots we move the system around charge triple points and transport exactly one electron or hole pe
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theo
We investigate charge and spin transport through an adiabatically driven, strongly interacting quantum dot weakly coupled to two metallic contacts with finite bias voltage. Within a kinetic equation approach, we identify coefficients of response to t
The adiabatic charge pumping of a non-equilibrium state of spinless fermions in a one-dimensional lattice is investigated, with an emphasis placed on its usefulness in revealing many-body interaction effects on interband coherence. For a non-interact