ﻻ يوجد ملخص باللغة العربية
The adiabatic charge pumping of a non-equilibrium state of spinless fermions in a one-dimensional lattice is investigated, with an emphasis placed on its usefulness in revealing many-body interaction effects on interband coherence. For a non-interacting system, the pumped charge per adiabatic cycle depends not only on the topology of the occupied bands but also on the interband coherence in the initial state. This insight leads to an interesting opportunity for quantitatively observing how quantum coherence is affected by many-body interaction that is switched on for a varying duration prior to adiabatic pumping. In particular, interband coherence effects can be clearly observed by adjusting the switch-on rates with different adiabatic pumping protocols and by scanning the duration of many-body interaction prior to adiabatic pumping. The time dependence of single-particle interband coherence in the presence of many-body interaction can then be examined in detail. As a side but interesting result, for relatively weak interaction strength, it is found that the difference in the pumped charges between different pumping protocols vanishes if a coherence measure defined from the single-particle density matrix in the sublattice representation reaches its local minima. Our results hence provide an interesting means to quantitatively probe the dynamics of quantum coherence in the presence of many-body interaction (e.g., in a thermalization process).
We introduce a local radiative heat-pumping effect between two bodies in a many-body system, obtained by periodically modulating both the temperature and the position of an intermediate object using an external source of energy. We show that the magn
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theo
We study non-adiabatic two-parameter charge and spin pumping through a single-level quantum dot with Coulomb interaction. For the limit of weak tunnel coupling and in the regime of pumping frequencies up to the tunneling rates, $Omega lesssim Gamma/h
Many quantum materials of interest, ex., bilayer graphene, possess a number of closely spaced but not fully degenerate bands near the Fermi level, where the coupling to the far detuned remote bands can induce Berry curvatures of the non-Abelian chara
We demonstrate controlled pumping of Cooper pairs down to the level of a single pair per cycle, using an rf-driven Cooper-pair sluice. We also investigate the breakdown of the adiabatic dynamics in two different ways. By transferring many Cooper pair