ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing many-body effects on interband coherence through adiabatic charge pumping

298   0   0.0 ( 0 )
 نشر من قبل Jiangbin Gong Prof.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The adiabatic charge pumping of a non-equilibrium state of spinless fermions in a one-dimensional lattice is investigated, with an emphasis placed on its usefulness in revealing many-body interaction effects on interband coherence. For a non-interacting system, the pumped charge per adiabatic cycle depends not only on the topology of the occupied bands but also on the interband coherence in the initial state. This insight leads to an interesting opportunity for quantitatively observing how quantum coherence is affected by many-body interaction that is switched on for a varying duration prior to adiabatic pumping. In particular, interband coherence effects can be clearly observed by adjusting the switch-on rates with different adiabatic pumping protocols and by scanning the duration of many-body interaction prior to adiabatic pumping. The time dependence of single-particle interband coherence in the presence of many-body interaction can then be examined in detail. As a side but interesting result, for relatively weak interaction strength, it is found that the difference in the pumped charges between different pumping protocols vanishes if a coherence measure defined from the single-particle density matrix in the sublattice representation reaches its local minima. Our results hence provide an interesting means to quantitatively probe the dynamics of quantum coherence in the presence of many-body interaction (e.g., in a thermalization process).



قيم البحث

اقرأ أيضاً

We introduce a local radiative heat-pumping effect between two bodies in a many-body system, obtained by periodically modulating both the temperature and the position of an intermediate object using an external source of energy. We show that the magn itude and the sign of energy flow can be tuned by changing the oscillation amplitude and dephasing of the two parameters. This many-body effect paves the way for an efficient and active control of heat fluxes at the nanoscale.
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theo retical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.
We study non-adiabatic two-parameter charge and spin pumping through a single-level quantum dot with Coulomb interaction. For the limit of weak tunnel coupling and in the regime of pumping frequencies up to the tunneling rates, $Omega lesssim Gamma/h bar$, we perform an exact resummation of contributions of all orders in the pumping frequency. As striking non-adiabatic signatures, we find frequency-dependent phase shifts in the charge and spin currents, which allow for an effective single-parameter pumping as well as pure spin without charge currents.
77 - Ci Li , Matisse Wei-Yuan Tu , 2021
Many quantum materials of interest, ex., bilayer graphene, possess a number of closely spaced but not fully degenerate bands near the Fermi level, where the coupling to the far detuned remote bands can induce Berry curvatures of the non-Abelian chara cter in this active multiple-band manifold for transport effects. Under finite electric fields, non-adiabatic interband transition processes are expected to play significant roles in the associated Hall conduction. Here through an exemplified study on the valley Hall conduction in AB-stacked bilayer graphene, we show that the contribution arising from non-adiabatic transitions around the bands near the Fermi energy to the Hall current is not only quantitatively about an order-of-magnitude larger than the contribution due to adiabatic inter-manifold transition with the non-Abelian Berry curvatures. Due to the trigonal warping, the former also displays an anisotropic response to the orientation of the applied electric field that is qualitatively distinct from that of the latter. We further show that these anisotropic responses also reveal the essential differences between the diagonal and off-diagonal elements of the non-Abelian Berry curvature matrix in terms of their contributions to the Hall currents. We provide a physically intuitive understanding of the origin of distinct anisotropic features from different Hall current contributions, in terms of band occupations and interband coherence. This then points to the generalization beyond the specific example of bilayer graphenes.
We demonstrate controlled pumping of Cooper pairs down to the level of a single pair per cycle, using an rf-driven Cooper-pair sluice. We also investigate the breakdown of the adiabatic dynamics in two different ways. By transferring many Cooper pair s at a time, we observe a crossover between pure Cooper-pair and mixed Cooper-pair-quasiparticle transport. By tuning the Josephson coupling that governs Cooper-pair tunneling, we characterize Landau-Zener transitions in our device. Our data are quantitatively accounted for by a simple model including decoherence effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا