ترغب بنشر مسار تعليمي؟ اضغط هنا

What is the effect of country-specific characteristics on the research performance of scientific institutions? Using multi-level statistical models to rank and map universities and research-focused institutions worldwide

466   0   0.0 ( 0 )
 نشر من قبل Lutz Bornmann Dr.
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Bornmann, Stefaner, de Moya Anegon, and Mutz (in press) have introduced a web application (www.excellencemapping.net) which is linked to both academic ranking lists published hitherto (e.g. the Academic Ranking of World Universities) as well as spatial visualization approaches. The web application visualizes institutional performance within specific subject areas as ranking lists and on custom tile-based maps. The new, substantially enhanced version of the web application and the multilevel logistic regression on which it is based are described in this paper. Scopus data were used which have been collected for the SCImago Institutions Ranking. Only those universities and research-focused institutions are considered that have published at least 500 articles, reviews and conference papers in the period 2006 to 2010 in a certain Scopus subject area. In the enhanced version, the effect of single covariates (such as the per capita GDP of a country in which an institution is located) on two performance metrics (best paper rate and best journal rate) is examined and visualized. A covariate-adjusted ranking and mapping of the institutions is produced in which the single covariates are held constant. The results on the performance of institutions can then be interpreted as if the institutions all had the same value (reference point) for the covariate in question. For example, those institutions can be identified worldwide showing a very good performance despite a bad financial situation in the corresponding country.



قيم البحث

اقرأ أيضاً

The web application presented in this paper allows for an analysis to reveal centres of excellence in different fields worldwide using publication and citation data. Only specific aspects of institutional performance are taken into account and other aspects such as teaching performance or societal impact of research are not considered. Based on data gathered from Scopus, field-specific excellence can be identified in institutions where highly-cited papers have been frequently published. The web application combines both a list of institutions ordered by different indicator values and a map with circles visualizing indicator values for geocoded institutions. Compared to the mapping and ranking approaches introduced hitherto, our underlying statistics (multi-level models) are analytically oriented by allowing (1) the estimation of values for the number of excellent papers for an institution which are statistically more appropriate than the observed values; (2) the calculation of confidence intervals as measures of accuracy for the institutional citation impact; (3) the comparison of a single institution with an average institution in a subject area, and (4) the direct comparison of at least two institutions.
In this article, we conduct data mining to discover the countries, universities and companies, produced or collaborated the most research on Covid-19 since the pandemic started. We present some interesting findings, but despite analysing all availabl e records on COVID-19 from the Web of Science Core Collection, we failed to reach any significant conclusions on how the world responded to the COVID-19 pandemic. Therefore, we increased our analysis to include all available data records on pandemics and epidemics from 1900 to 2020. We discover some interesting results on countries, universities and companies, that produced collaborated most the most in research on pandemic and epidemics. Then we compared the results with the analysing on COVID-19 data records. This has created some interesting findings that are explained and graphically visualised in the article.
Research institutions provide the infrastructure for scientific discovery, yet their role in the production of knowledge is not well characterized. To address this gap, we analyze interactions of researchers within and between institutions from milli ons of scientific papers. Our analysis reveals that the number of collaborations scales superlinearly with institution size, though at different rates (heterogeneous densification). We also find that the number of institutions scales with the number of researchers as a power law (Heaps law) and institution sizes approximate Zipfs law. These patterns can be reproduced by a simple model with three mechanisms: (i) researchers collaborate with friends-of-friends, (ii) new institutions trigger more potential institutions, and (iii) researchers are preferentially hired by large institutions. This model reveals an economy of scale in research: larger institutions grow faster and amplify collaborations. Our work provides a new understanding of emergent behavior in research institutions and how they facilitate innovation.
The vast amount of research produced at institutions world-wide is extremely diverse, and coarse-grained quantitative measures of impact often obscure the individual contributions of these institutions to specific research fields and topics. We show that by applying an information retrieval model to index research articles which are faceted by institution and time, we can develop tools to rank institutions given a keyword query. We present an interactive atlas, Quoka, designed to enable a user to explore these rankings contextually by geography and over time. Through a set of use cases we demonstrate that the atlas can be used to perform sensemaking tasks to learn and collect information about the relationships between institutions and scholarly knowledge production.
135 - Zhuoran He , Tingtao Zhou 2021
Modern scientific research has become largely a cooperative activity in the Internet age. We build a simulation model to understand the population-level creativity based on the heuristic ant colony algorithm. Each researcher has two heuristic paramet ers characterizing the goodness of his own judgments and his trust on literature. In a population with all kinds of researchers, we find that as the problem scale increases, the contributor distribution significantly shifts from the independent regime of relying on ones own judgments to the cooperative regime of more closely following the literature. The distribution also changes with the stage of the research problem and the computing power available. Our work provides some preliminary understanding and guidance for the dynamical process of cooperative scientific research in various disciplines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا