ترغب بنشر مسار تعليمي؟ اضغط هنا

Ranking and mapping of universities and research-focused institutions worldwide based on highly-cited papers: A visualization of results from multi-level models

216   0   0.0 ( 0 )
 نشر من قبل Lutz Bornmann Dr.
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

The web application presented in this paper allows for an analysis to reveal centres of excellence in different fields worldwide using publication and citation data. Only specific aspects of institutional performance are taken into account and other aspects such as teaching performance or societal impact of research are not considered. Based on data gathered from Scopus, field-specific excellence can be identified in institutions where highly-cited papers have been frequently published. The web application combines both a list of institutions ordered by different indicator values and a map with circles visualizing indicator values for geocoded institutions. Compared to the mapping and ranking approaches introduced hitherto, our underlying statistics (multi-level models) are analytically oriented by allowing (1) the estimation of values for the number of excellent papers for an institution which are statistically more appropriate than the observed values; (2) the calculation of confidence intervals as measures of accuracy for the institutional citation impact; (3) the comparison of a single institution with an average institution in a subject area, and (4) the direct comparison of at least two institutions.



قيم البحث

اقرأ أيضاً

Bornmann, Stefaner, de Moya Anegon, and Mutz (in press) have introduced a web application (www.excellencemapping.net) which is linked to both academic ranking lists published hitherto (e.g. the Academic Ranking of World Universities) as well as spati al visualization approaches. The web application visualizes institutional performance within specific subject areas as ranking lists and on custom tile-based maps. The new, substantially enhanced version of the web application and the multilevel logistic regression on which it is based are described in this paper. Scopus data were used which have been collected for the SCImago Institutions Ranking. Only those universities and research-focused institutions are considered that have published at least 500 articles, reviews and conference papers in the period 2006 to 2010 in a certain Scopus subject area. In the enhanced version, the effect of single covariates (such as the per capita GDP of a country in which an institution is located) on two performance metrics (best paper rate and best journal rate) is examined and visualized. A covariate-adjusted ranking and mapping of the institutions is produced in which the single covariates are held constant. The results on the performance of institutions can then be interpreted as if the institutions all had the same value (reference point) for the covariate in question. For example, those institutions can be identified worldwide showing a very good performance despite a bad financial situation in the corresponding country.
Bibliometrics provides accurate, cheap and simple descriptions of research systems and should lay the foundations for research policy. However, disconnections between bibliometric knowledge and research policy frequently misguide the research policy in many countries. A way of correcting these disconnections might come from the use of simple indicators of research performance. One such simple indicator is the number of highly cited researchers, which can be used under the assumption that a research system that produces and employs many highly cited researchers will be more successful than others with fewer of them. Here, we validate the use of the number of highly cited researchers (Ioannidis et al. 2020; PLoS Biol 18(10): e3000918) for research assessment at the country level and determine a country ranking of research success. We also demonstrate that the number of highly cited researchers reported by Clarivate Analytics is also an indicator of the research success of countries. The formal difference between the numbers of highly cited researchers according to Ionannidis et al. and Clarivate Analytics is that evaluations based on these two lists of highly cited researchers are approximately equivalent to evaluations based on the top 5% and 0.05% of highly cited papers, respectively. Moreover, the Clarivate Analytics indicator is flawed in some countries.
Many studies in information science have looked at the growth of science. In this study, we re-examine the question of the growth of science. To do this we (i) use current data up to publication year 2012 and (ii) analyse it across all disciplines an d also separately for the natural sciences and for the medical and health sciences. Furthermore, the data are analysed with an advanced statistical technique - segmented regression analysis - which can identify specific segments with similar growth rates in the history of science. The study is based on two different sets of bibliometric data: (1) The number of publications held as source items in the Web of Science (WoS, Thomson Reuters) per publication year and (2) the number of cited references in the publications of the source items per cited reference year. We have looked at the rate at which science has grown since the mid-1600s. In our analysis of cited references we identified three growth phases in the development of science, which each led to growth rates tripling in comparison with the previous phase: from less than 1% up to the middle of the 18th century, to 2 to 3% up to the period between the two world wars and 8 to 9% to 2012.
In over five years, Bornmann, Stefaner, de Moya Anegon, and Mutz (2014) and Bornmann, Stefaner, de Moya Anegon, and Mutz (2014, 2015) have published several releases of the www.excellencemapping.net tool revealing (clusters of) excellent institutions worldwide based on citation data. With the new release, a completely revised tool has been published. It is not only based on citation data (bibliometrics), but also Mendeley data (altmetrics). Thus, the institutional impact measurement of the tool has been expanded by focusing on additional status groups besides researchers such as students and librarians. Furthermore, the visualization of the data has been completely updated by improving the operability for the user and including new features such as institutional profile pages. In this paper, we describe the datasets for the current excellencemapping.net tool and the indicators applied. Furthermore, the underlying statistics for the tool and the use of the web application are explained.
There is demand from science funders, industry, and the public that science should become more risk-taking, more out-of-the-box, and more interdisciplinary. Is it possible to tell how interdisciplinary and out-of-the-box scientific papers are, or whi ch papers are mainstream? Here we use the bibliographic coupling network, derived from all physics papers that were published in the Physical Review journals in the past century, to try to identify them as mainstream, out-of-the-box, or interdisciplinary. We show that the network clusters into scientific fields. The position of individual papers with respect to these clusters allows us to estimate their degree of mainstreamness or interdisciplinary. We show that over the past decades the fraction of mainstream papers increases, the fraction of out-of-the-box decreases, and the fraction of interdisciplinary papers remains constant. Studying the rewards of papers, we find that in terms of absolute citations, both, mainstream and interdisciplinary papers are rewarded. In the long run, mainstream papers perform less than interdisciplinary ones in terms of citation rates. We conclude that to avoid a trend towards mainstreamness a new incentive scheme is necessary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا