ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic equation for spatially averaged molecular dynamics

133   0   0.0 ( 0 )
 نشر من قبل Lyudmyla Barannyk
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain a kinetic description of spatially averaged dynamics of particle systems. Spatial averaging is one of the three types of averaging relevant within the Irwing-Kirkwood procedure (IKP), a general method for deriving macroscopic equations from molecular models. The other two types, ensemble averaging and time averaging, have been extensively studied, while spatial averaging is relatively less understood. We show that the average density, linear momentum, and kinetic energy used in IKP can be obtained from a single average quantity, called the generating function. A kinetic equation for the generating function is obtained and tested numerically on Lennard-Jones oscillator chains.



قيم البحث

اقرأ أيضاً

100 - M. Robles , 2003
Following the work of Leutheusser [Physica A 127, 667 (1984)], the solution to the Percus-Yevick equation for a seven-dimensional hard-sphere fluid is explicitly found. This allows the derivation of the equation of state for the fluid taking both the virial and the compressibility routes. An analysis of the virial coefficients and the determination of the radius of convergence of the virial series are carried out. Molecular dynamics simulations of the same system are also performed and a comparison between the simulation results for the compressibility factor and theoretical expressions for the same quantity is presented.
The dynamics of dissipative soft-sphere gases obeys Newtons equation of motion which are commonly solved numerically by (force-based) Molecular Dynamics schemes. With the assumption of instantaneous, pairwise collisions, the simulation can be acceler ated considerably using event-driven Molecular Dynamics, where the coefficient of restitution is derived from the interaction force between particles. Recently it was shown, however, that this approach may fail dramatically, that is, the obtained trajectories deviate significantly from the ones predicted by Newtons equations. In this paper, we generalize the concept of the coefficient of restitution and derive a numerical scheme which, in the case of dilute systems and frictionless interaction, allows us to perform highly efficient event-driven Molecular Dynamics simulations even for non-instantaneous collisions. We show that the particle trajectories predicted by the new scheme agree perfectly with the corresponding (force-based) Molecular Dynamics, except for a short transient period whose duration corresponds to the duration of the contact. Thus, the new algorithm solves Newtons equations of motion like force-based MD while preserving the advantages of event-driven simulations.
119 - E. Aydiner 2021
In this study, we analytically formulated the path integral representation of the conditional probabilities for non-Markovian kinetic processes in terms of the free energy of the thermodynamic system. We carry out analytically the time-fractional kin etic equations for these processes. Thus, in a simple way, we generalize path integral solutions of the Markovian to the non-Markovian cases. We conclude that these pedagogical results can be applied to some physical problems such as the deformed ion channels, internet networks and non-equilibrium phase transition problems.
Current all-atom potential based molecular dynamics (MD) allow the identification of a proteins functional motions on a wide-range of time-scales, up to few tens of ns. However, functional large scale motions of proteins may occur on a time-scale cur rently not accessible by all-atom potential based molecular dynamics. To avoid the massive computational effort required by this approach several simplified schemes have been introduced. One of the most satisfactory is the Gaussian Network approach based on the energy expansion in terms of the deviation of the protein backbone from its native configuration. Here we consider an extension of this model which captures in a more realistic way the distribution of native interactions due to the introduction of effective sidechain centroids. Since their location is entirely determined by the protein backbone, the model is amenable to the same exact and computationally efficient treatment as previous simpler models. The ability of the model to describe the correlated motion of protein residues in thermodynamic equilibrium is established through a series of successful comparisons with an extensive (14 ns) MD simulation based on the AMBER potential of HIV-1 protease in complex with a peptide substrate. Thus, the model presented here emerges as a powerful tool to provide preliminary, fast yet accurate characterizations of proteins near-native motion.
We discuss the use of a Langevin equation with a colored (correlated) noise to perform constant-temperature molecular dynamics simulations. Since the equations of motion are linear in nature, it is easy to predict the response of a Hamiltonian system to such a thermostat and to tune at will the relaxation time of modes of different frequency. This allows one to optimize the time needed to thermalize the system and generate independent configurations. We show how this frequency-dependent response can be exploited to control the temperature of Car-Parrinello-like dynamics, keeping at low temperature the electronic degrees of freedom, without affecting the adiabatic separation from the vibrations of the ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا