ﻻ يوجد ملخص باللغة العربية
Following the work of Leutheusser [Physica A 127, 667 (1984)], the solution to the Percus-Yevick equation for a seven-dimensional hard-sphere fluid is explicitly found. This allows the derivation of the equation of state for the fluid taking both the virial and the compressibility routes. An analysis of the virial coefficients and the determination of the radius of convergence of the virial series are carried out. Molecular dynamics simulations of the same system are also performed and a comparison between the simulation results for the compressibility factor and theoretical expressions for the same quantity is presented.
Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E textbf{83}, 011201 (2011)]. It
Population annealing is a sequential Monte Carlo scheme well-suited to simulating equilibrium states of systems with rough free energy landscapes. Here we use population annealing to study a binary mixture of hard spheres. Population annealing is a p
An overview of some analytical approaches to the computation of the structural and thermodynamic properties of single component and multicomponent hard-sphere fluids is provided. For the structural properties, they yield a thermodynamically consisten
We use the Percus-Yevick approach in the chemical-potential route to evaluate the equation of state of hard hyperspheres in five dimensions. The evaluation requires the derivation of an analytical expression for the contact value of the pair distribu
We introduce a scheme for deriving an optimally-parametrised Langevin dynamics of few collective variables from data generated in molecular dynamics simulations. The drift and the position-dependent diffusion profiles governing the Langevin dynamics