ﻻ يوجد ملخص باللغة العربية
In this study, we analytically formulated the path integral representation of the conditional probabilities for non-Markovian kinetic processes in terms of the free energy of the thermodynamic system. We carry out analytically the time-fractional kinetic equations for these processes. Thus, in a simple way, we generalize path integral solutions of the Markovian to the non-Markovian cases. We conclude that these pedagogical results can be applied to some physical problems such as the deformed ion channels, internet networks and non-equilibrium phase transition problems.
We get fractional symmetric Fokker - Planck and Einstein - Smoluchowski kinetic equations, which describe evolution of the systems influenced by stochastic forces distributed with stable probability laws. These equations generalize known kinetic equa
We obtain a kinetic description of spatially averaged dynamics of particle systems. Spatial averaging is one of the three types of averaging relevant within the Irwing-Kirkwood procedure (IKP), a general method for deriving macroscopic equations from
The persistence of a stochastic variable is the probability that it does not cross a given level during a fixed time interval. Although persistence is a simple concept to understand, it is in general hard to calculate. Here we consider zero mean Gaus
The article is devoted to the dynamics of systems with an anomalous scaling near a critical point. The fractional stochastic equation of a Lanvevin type with the $varphi^3$ nonlinearity is considered. By analogy with the model A the field theoretic m
The system of nonlinear Langevin equations was obtained by using Hamiltonians operator of two coupling quantum oscillators which are interacting with heat bath. By using the analytical solution of these equations, the analytical expressions for trans