ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Equilibrium Superconductivity in Kinetic Inductance Detectors for THz Photon Sensing

263   0   0.0 ( 0 )
 نشر من قبل David Goldie
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low temperature Kinetic Inductance Detectors (KIDs) are attractive candidates for producing quantumsensitive, arrayable sensors for astrophysical and other precision measurement applications. The readout uses a low frequency probe signal with quanta of energy well-below the threshold for pair-breaking in the superconductor. We have calculated the detailed non-equilibrium quasiparticle and phonon energy spectra generated by the probe signal of the KID when operating well-below its superconducting transition temperature Tc within the framework of the coupled kinetic equations described by Chang and Scalapino.[1] At the lowest bath temperature studied Tb/Tc = 0.1 the quasiparticle distributions can be driven far from equilibrium. In addition to the low frequency probe signal we have incorporated a high frequency (~ 1 THz) source signal well-above the pair-breaking threshold of the superconductor. Calculations of source signal detection efficiency are discussed



قيم البحث

اقرأ أيضاً

73 - S. Doerner , A. Kuzmin , K. Graf 2017
We present a compact current sensor based on a superconducting microwave lumped-element resonator with a nanowire kinetic inductor, operating at 4.2 K. The sensor is suitable for multiplexed readout in GHz range of large-format arrays of cryogenic de tectors. The device consists of a lumped-element resonant circuit, fabricated from a single 4-nm-thick superconducting layer of niobium nitride. Thus, the fabrication and operation is significantly simplified in comparison to state-of-the-art approaches. Because the resonant circuit is inductively coupled to the feed line the current to be measured can directly be injected without having the need of an impedance matching circuit, reducing the system complexity. With the proof-of-concept device we measured a current noise floor {delta}Imin of 10 pA/Hz1/2 at 10 kHz. Furthermore, we demonstrate the ability of our sensor to amplify a pulsed response of a superconducting nanowire single-photon detector using a GHz-range carrier for effective frequency-division multiplexing.
We carry out an experimental feasibility study of a magnetic field sensor based on the kinetic inductance of the high-$T_mathrm{c}$ superconductor yttrium barium copper oxide. We pattern thin superconducting films into radio-frequency resonators that feature a magnetic field pick-up loop. At 77 K and for film thicknesses down to 75 nm, we observe the persistence of screening currents that modulate the loop kinetic inductance. According to the experimental results the device concept appears attractive for sensing applications in ambient magnetic field environments. We report on a device with a magnetic field sensitivity of 4 pT/Hz${}^{1/2}$, an instantaneous dynamic range of 11 $mu$T, and operability in magnetic fields up to 28 $mu$T.
We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors (MKIDs) made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4~K. Mic ro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250~micron. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is $>$~0.5~pW, corresponding to noise equivalent powers $>$~3$times 10^{-17}$ W/$sqrt{mathrm{Hz}}$. This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths.
We have developed a passive 350 GHz (850 {mu}m) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs) -- designed originally for far-infrared astronomy -- as an option for general purpose terrestrial terahertz imaging appli cations. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of $sim$0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.
Thermal Kinetic Inductance Detectors (TKIDs) combine the excellent noise performance of traditional bolometers with a radio frequency multiplexing architecture that enables the large detector counts needed for the next generation of millimeter-wave i nstruments. In this paper, we first discuss the expected noise sources in TKIDs and derive the limits where the phonon noise contribution dominates over the other detector noise terms: generation-recombination, amplifier, and two-level system (TLS) noise. Second, we characterize aluminum TKIDs in a dark environment. We present measurements of TKID resonators with quality factors of about $10^5$ at 80 mK. We also discuss the bolometer thermal conductance, heat capacity, and time constants. These were measured by the use of a resistor on the thermal island to excite the bolometers. These dark aluminum TKIDs demonstrate a noise equivalent power NEP = $2 times 10^{-17} mathrm{W}/mathrm{sqrt{Hz}} $, with a $1/f$ knee at 0.1 Hz, which provides background noise limited performance for ground-based telescopes observing at 150 GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا