ترغب بنشر مسار تعليمي؟ اضغط هنا

A passive THz video camera based on lumped element kinetic inductance detectors

123   0   0.0 ( 0 )
 نشر من قبل Sam Rowe
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a passive 350 GHz (850 {mu}m) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs) -- designed originally for far-infrared astronomy -- as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of $sim$0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.



قيم البحث

اقرأ أيضاً

282 - M. Roesch , A. Benoit , A. Bideaud 2012
Lumped-element kinetic inductance detectors(LEKIDs) have recently shown considerable promise as direct absorption mm-wavelength detectors for astronomical applications. One major research thrust within the Neel Iram Kids Array (NIKA) collaboration ha s been to investigate the suitability of these detectors for deployment at the 30-meter IRAM telescope located on Pico Veleta in Spain. Compared to microwave kinetic inductance detectors (MKID), using quarter wavelength resonators, the resonant circuit of a LEKID consists of a discrete inductance and capacitance coupled to a feedline. A high and constant current density distribution in the inductive part of these resonators makes them very sensitive. Due to only one metal layer on a silicon substrate, the fabrication is relatively easy. In order to optimize the LEKIDs for this application, we have recently probed a wide variety of individual resonator and array parameters through simulation and physical testing. This included determining the optimal feed-line coupling, pixel geometry, resonator distribution within an array (in order to minimize pixel cross-talk), and resonator frequency spacing. Based on these results, a 144-pixel Aluminum array was fabricated and tested in a dilution fridge with optical access, yielding an average optical NEP of ~2E-16 W/Hz^1/2 (best pixels showed NEP = 6E-17 W/Hz^1/2 under 4-8 pW loading per pixel). In October 2010 the second prototype of LEKIDs has been tested at the IRAM 30 m telescope. A new LEKID geometry for 2 polarizations will be presented. Also first optical measurements of a titanium nitride array will be discussed.
Thermal Kinetic Inductance Detectors (TKIDs) combine the excellent noise performance of traditional bolometers with a radio frequency multiplexing architecture that enables the large detector counts needed for the next generation of millimeter-wave i nstruments. In this paper, we first discuss the expected noise sources in TKIDs and derive the limits where the phonon noise contribution dominates over the other detector noise terms: generation-recombination, amplifier, and two-level system (TLS) noise. Second, we characterize aluminum TKIDs in a dark environment. We present measurements of TKID resonators with quality factors of about $10^5$ at 80 mK. We also discuss the bolometer thermal conductance, heat capacity, and time constants. These were measured by the use of a resistor on the thermal island to excite the bolometers. These dark aluminum TKIDs demonstrate a noise equivalent power NEP = $2 times 10^{-17} mathrm{W}/mathrm{sqrt{Hz}} $, with a $1/f$ knee at 0.1 Hz, which provides background noise limited performance for ground-based telescopes observing at 150 GHz.
Low temperature Kinetic Inductance Detectors (KIDs) are attractive candidates for producing quantumsensitive, arrayable sensors for astrophysical and other precision measurement applications. The readout uses a low frequency probe signal with quanta of energy well-below the threshold for pair-breaking in the superconductor. We have calculated the detailed non-equilibrium quasiparticle and phonon energy spectra generated by the probe signal of the KID when operating well-below its superconducting transition temperature Tc within the framework of the coupled kinetic equations described by Chang and Scalapino.[1] At the lowest bath temperature studied Tb/Tc = 0.1 the quasiparticle distributions can be driven far from equilibrium. In addition to the low frequency probe signal we have incorporated a high frequency (~ 1 THz) source signal well-above the pair-breaking threshold of the superconductor. Calculations of source signal detection efficiency are discussed
We demonstrate strong negative electrothermal feedback accelerating and linearizing the response of a thermal kinetic inductance detector (TKID). TKIDs are a proposed highly multiplexable replacement to transition-edge sensors and measure power throu gh the temperature-dependent resonant frequency of a superconducting microresonator bolometer. At high readout probe power and probe frequency detuned from the TKID resonant frequency, we observe electrothermal feedback loop gain up to $mathcal L$ $approx$ 16 through measuring the reduction of settling time. We also show that the detector response has no detectable non-linearity over a 38% range of incident power and that the noise-equivalent power is below the design photon noise.
We present an analysis of the optical response of lumped-element kinetic-inductance detector arrays, based on the NIKA2 1mm array. This array has a dual-polarization sensitive Hilbert inductor for directly absorbing incident photons. We present the o ptical response calculated from a transmission line model, simulated with HFSS and measured using a Fourier transform spectrometer. We have estimated the energy absorbed by individual component of a pixel, such as the inductor. The difference between the absorption efficiencies is expected to be 20% from the simulations. The Fourier-transform spectroscopy measurement, performed on the actual NIKA2 arrays, validates our simulations. We discuss several possible ways to increase the absorption efficiency. This analysis can be used for optimization of the focal plane layout and can be extended to other kinetic inductance detector array designs in millimeter, sub-millimeter and terahertz frequency bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا