ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors

190   0   0.0 ( 0 )
 نشر من قبل Johannes Hubmayr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors (MKIDs) made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4~K. Micro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250~micron. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is $>$~0.5~pW, corresponding to noise equivalent powers $>$~3$times 10^{-17}$ W/$sqrt{mathrm{Hz}}$. This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths.



قيم البحث

اقرأ أيضاً

To use highly resistive material for Kinetic Inductance Detectors (KID), new designs have to be done, in part due to the impedance match needed between the KID chip and the whole 50 ohms readout circuit. Chips from two new hybrid designs, with an alu minum throughline coupled to titanium nitride microresonators, have been measured and compared to a TiN only chip. In the hybrid chips, parasitic temperature dependent box resonances are absent. The dark KID properties have been measured in a large set of resonators. A surprisingly long lifetime, up to 5.6 ms is observed in a few KIDs. For the other more reproducible devices, the mean electrical Noise Equivalent Power is 5.4 10-19 W.Hz1/2.
Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon noise limited perf ormance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally we use the observed photon noise to measure the optical efficiency of detectors to be 0.8+-0.2.
We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radi ation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to $mathrm{NEP} approx 2 times 10^{-17} , mathrm{W} , mathrm{Hz}^{-1/2}$, referenced to absorbed power. At higher source power levels we observe the relationships between noise and power expected from the photon statistics of the source signal: $mathrm{NEP} propto P$ for broadband (chaotic) illumination and $mathrm{NEP} propto P^{1/2}$ for continuous-wave (coherent) illumination.
We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-ante nna system used to couple radiation into the MKID and derive an aperture efficiency of 75%. This is close to the theoretical maximum of 80% for a single-moded detector. The beam patterns are verified by a detailed analysis of the optical coupling within our measurement setup.
Microwave Kinetic Inductance Detectors (MKIDs) have great potential for large very sensitive detector arrays for use in, for example, sub-mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency doma in multiplexing allowing $sim$1000s of devices to be readout with one pair of coaxial cables. However, this moves the complexity of the detector from the cryogenics to the warm electronics. We present here the concept and experimental demonstration of the use of Fast Fourier Transform Spectrometer (FFTS) readout, showing no deterioration of the noise performance compared to low noise analog mixing while allowing high multiplexing ratios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا