ﻻ يوجد ملخص باللغة العربية
We present a calculation of the strangeness and charmness contents <N|bar{s}s|N> and <N|bar{c}c|N> of the nucleon from dynamical lattice QCD with 2+1 flavors. The calculation is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations. The configurations are generated by the RBC collaboration on a 24^3*64 lattice with sea quark mass am_l=0.005, am_s=0.04, and inverse lattice spacing a^{-1}=1.73GeV. Both actions have chiral symmetry which is essential in avoiding contamination due to the operator mixing with other flavors. Nucleon propagator and the quark loops are both computed with stochastic grid sources, while low-mode substitution and low-mode averaging methods are used respectively which substantially improve the signal to noise ratio. We obtain the strangeness matrix element f_{T_{s}} = m_s <N|bar{s}s|N> / M_N = 0.0334(62), and the charmness content f_{T_{c}} = m_c <N|bar{c}c|N> / M_N = 0.094(31) which is resolved from zero by 3sigma precision for the first time.
The calculation of the strangeness and charmness of the nucleon is presented with overlap fermion action on 2+1 flavor domain wall fermion configurations. We adopt stochastic grid sources and the low mode substitution technique to improve the signals
The charmed-strange meson spectrum is calculated with the overlap valence fermions on 2+1 flavor domain wall dynamical configurations for $32^3times 64$ lattices with a spatial size of 2.7 fm. Both charm and strange quark propagators are calculated w
We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon
The overlap fermion propagator is calculated on 2+1 flavor domain wall fermion gauge configurations on 16^3 x 32, 24^3 x 64 and 32^3 x 64 lattices. With HYP smearing and low eigenmode deflation, it is shown that the inversion of the overlap operator
We present the N_f=2+1 clover fermion lattice QCD calculation of the nucleon strangeness form factors. We evaluate disconnected insertions using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansion. We fin