ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Fermi liquid behavior in Bose-Fermi mixtures at two dimensions

187   0   0.0 ( 0 )
 نشر من قبل Feng Xiao-Yong
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the low temperature behaviors of a system of Bose-Fermi mixtures at two dimensions. Within a self-consistent ladder diagram approximation, we show that at nonzero temperatures $Trightarrow0$ the fermions exhibit non-fermi liquid behavior. We propose that this is a general feature of Bose-Fermi mixtures at two dimensions. An experimental signature of this new state is proposed.



قيم البحث

اقرأ أيضاً

116 - S. Modak , S.-W. Tsai , 2011
We study a mixture of ultracold spin-half fermionic and spin-one bosonic atoms in a shallow optical lattice where the bosons are coupled to the fermions via both density-density and spin-spin interactions. We consider the parameter regime where the b osons are in a superfluid ground state, integrate them out, and obtain an effective action for the fermions. We carry out a renormalization group analysis of this effective fermionic action at low temperatures, show that the presence of the spinor bosons may lead to a separation of Fermi surfaces of the spin-up and spin-down fermions, and investigate the parameter range where this phenomenon occurs. We also calculate the susceptibilities corresponding to the possible superfluid instabilities of the fermions and obtain their possible broken-symmetry ground states at low temperatures and weak interactions.
We analyze the influence of quantum critical fluctuations on single-particle excitations at the onset of incommensurate $2k_F$ charge or spin density wave order in two-dimensional metals. The case of a single pair of hot spots at high symmetry positi ons on the Fermi surface needs to be distinguished from the case of two hot spot pairs. We compute the fluctuation propagator and the electronic self-energy perturbatively in leading order. The energy dependence of the single-particle decay rate at the hot spots obeys non-Fermi liquid power laws, with an exponent 2/3 in the case of a single hot spot pair, and exponent one for two hot spot pairs. The prefactors of the linear behavior obtained in the latter case are not particle-hole symmetric.
We report measurements of the bulk magnetic susceptibility and ^{29}Si nuclear magnetic resonance (NMR) linewidth in the heavy-fermion alloy CeRhRuSi_2. The linewidth increases rapidly with decreasing temperature and reaches large values at low tempe ratures, which strongly suggests the wide distributions of local susceptibilities chi_j obtained in disorder-driven theories of non-Fermi-liquid (NFL) behavior. The NMR linewidths agree well with distribution functions P(chi) which fit bulk susceptibility and specific heat data. The apparent return to Fermi-liquid behavior observed below 1 K is manifested in the vanishing of P(chi) as chi to infty, suggesting the absence of strong magnetic response at low energies. Our results indicate the need for an extension of some current theories of disorder-driven NFL behavior in order to incorporate this low-temperature crossover.
We study a two species fermion mixture with different populations on a square lattice modeled by a Hubbard Hamiltonian with on-site inter-species repulsive interaction. Such a model can be realized in a cold atom system with fermionic atoms in two di fferent hyperfine states loaded on an optical lattice and with tunable inter-species interaction strength via external fields. For a two-dimensional square lattice, when at least one of the fermion species is close to half-filling, the system is highly affected by lattice effects. With the majority species near half-filling and varying densities for the minority species, we find that several correlated phases emerge as the ground state, including a spin density wave state, a charge density wave state with stripe structure, and various p-wave BCS pairing states for both species. We study this system using a functional renormalization group method, determine its phase diagram at weak coupling, discuss the origin and characteristics of each phase, and provide estimates for the critical temperatures.
145 - SangEun Han , Yong Baek Kim 2021
Understanding non-Landau Fermi liquids in dimensions higher than one, has been a subject of great interest. Such phases may serve as parent states for other unconventional phases of quantum matter, in a similar manner that conventional broken symmetr y states can be understood as instabilities of the Landau Fermi liquid. In this work, we investigate the emergence of a novel non-Landau Fermi liquid in two dimensions, where the fermions with quadratic band-touching dispersion interact with a Bose metal. The bosonic excitations in the Bose metal possess an extended nodal-line spectrum in momentum space, which arises due to the subsystem symmetry or the restricted motion of bosons. Using renormalization group analysis and direct computations, we show that the extended infrared (IR) singularity of the Bose metal leads to a line of interacting fixed points of novel non-Landau Fermi liquids, where the anomalous dimension of the fermions varies continuously, akin to the Luttinger liquid in one dimension. Further, the multi-patch generalization of the model is used to explore other unusual features of the resulting ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا