ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalization group approach to spinor Bose-Fermi mixtures in a shallow optical lattice

79   0   0.0 ( 0 )
 نشر من قبل Krishnendu Sengupta
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a mixture of ultracold spin-half fermionic and spin-one bosonic atoms in a shallow optical lattice where the bosons are coupled to the fermions via both density-density and spin-spin interactions. We consider the parameter regime where the bosons are in a superfluid ground state, integrate them out, and obtain an effective action for the fermions. We carry out a renormalization group analysis of this effective fermionic action at low temperatures, show that the presence of the spinor bosons may lead to a separation of Fermi surfaces of the spin-up and spin-down fermions, and investigate the parameter range where this phenomenon occurs. We also calculate the susceptibilities corresponding to the possible superfluid instabilities of the fermions and obtain their possible broken-symmetry ground states at low temperatures and weak interactions.

قيم البحث

اقرأ أيضاً

We study a two species fermion mixture with different populations on a square lattice modeled by a Hubbard Hamiltonian with on-site inter-species repulsive interaction. Such a model can be realized in a cold atom system with fermionic atoms in two di fferent hyperfine states loaded on an optical lattice and with tunable inter-species interaction strength via external fields. For a two-dimensional square lattice, when at least one of the fermion species is close to half-filling, the system is highly affected by lattice effects. With the majority species near half-filling and varying densities for the minority species, we find that several correlated phases emerge as the ground state, including a spin density wave state, a charge density wave state with stripe structure, and various p-wave BCS pairing states for both species. We study this system using a functional renormalization group method, determine its phase diagram at weak coupling, discuss the origin and characteristics of each phase, and provide estimates for the critical temperatures.
125 - Xiao-Yong Feng , Tai-Kai Ng 2013
In this paper we study the low temperature behaviors of a system of Bose-Fermi mixtures at two dimensions. Within a self-consistent ladder diagram approximation, we show that at nonzero temperatures $Trightarrow0$ the fermions exhibit non-fermi liqui d behavior. We propose that this is a general feature of Bose-Fermi mixtures at two dimensions. An experimental signature of this new state is proposed.
The universal critical behavior of the driven-dissipative non-equilibrium Bose-Einstein condensation transition is investigated employing the field-theoretical renormalization group method. Such criticality may be realized in broad ranges of driven o pen systems on the interface of quantum optics and many-body physics, from exciton-polariton condensates to cold atomic gases. The starting point is a noisy and dissipative Gross-Pitaevski equation corresponding to a complex valued Landau-Ginzburg functional, which captures the near critical non-equilibrium dynamics, and generalizes Model A for classical relaxational dynamics with non-conserved order parameter. We confirm and further develop the physical picture previously established by means of a functional renormalization group study of this system. Complementing this earlier numerical analysis, we analytically compute the static and dynamical critical exponents at the condensation transition to lowest non-trivial order in the dimensional epsilon expansion about the upper critical dimension d_c = 4, and establish the emergence of a novel universal scaling exponent associated with the non-equilibrium drive. We also discuss the corresponding situation for a conserved order parameter field, i.e., (sub-)diffusive Model B with complex coefficients.
76 - M.Crisan , I.Grosu , I.Tifrea 2008
We consider the two dimensional disordered Bose gas which present a metallic state at low temperatures. A simple model of an interacting Bose system in a random field is propose to consider the interaction effect on the transition in the metallic state.
Coarsening dynamics theory has successfully described the equilibration of a broad class of systems.By studying the relaxation of a periodic array of microcondensates immersed in a Fermi gas which can mediate long-range spin interactions to simulate frustrated classical magnets, we show that coarsening dynamics can be suppressed by geometrical frustration. The system is found to eventually approach a metastable state which is robust against random field noise and characterized by finite correlation lengths with the emergence of topologically stable Z2 vortices. We find universal scaling laws with no thermal-equilibrium analog that relate the correlation lengths and the number of vortices to the degree of frustration in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا