ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Fermi liquid behavior at the onset of incommensurate 2k_F charge or spin density wave order in two dimensions

149   0   0.0 ( 0 )
 نشر من قبل Tobias Holder
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the influence of quantum critical fluctuations on single-particle excitations at the onset of incommensurate $2k_F$ charge or spin density wave order in two-dimensional metals. The case of a single pair of hot spots at high symmetry positions on the Fermi surface needs to be distinguished from the case of two hot spot pairs. We compute the fluctuation propagator and the electronic self-energy perturbatively in leading order. The energy dependence of the single-particle decay rate at the hot spots obeys non-Fermi liquid power laws, with an exponent 2/3 in the case of a single hot spot pair, and exponent one for two hot spot pairs. The prefactors of the linear behavior obtained in the latter case are not particle-hole symmetric.



قيم البحث

اقرأ أيضاً

199 - Xiao-Yong Feng , Tai-Kai Ng 2013
In this paper we study the low temperature behaviors of a system of Bose-Fermi mixtures at two dimensions. Within a self-consistent ladder diagram approximation, we show that at nonzero temperatures $Trightarrow0$ the fermions exhibit non-fermi liqui d behavior. We propose that this is a general feature of Bose-Fermi mixtures at two dimensions. An experimental signature of this new state is proposed.
335 - Bo Xiao , F. Hebert , G. Batrouni 2019
Recent studies of pairing and charge order in materials such as FeSe, SrTiO$_3$, and 2H-NbSe$_2$ have suggested that momentum dependence of the electron-phonon coupling plays an important role in their properties. Initial attempts to study Hamiltonia ns which either do not include or else truncate the range of Coulomb repulsion have noted that the resulting spatial non-locality of the electron-phonon interaction leads to a dominant tendency to phase separation. Here we present Quantum Monte Carlo results for such models in which we incorporate both on-site and intersite electron-electron interactions. We show that these can stabilize phases in which the density is homogeneous and determine the associated phase boundaries. As a consequence, the physics of momentum dependent electron-phonon coupling can be determined outside of the trivial phase separated regime.
We report the observation of a two-dimensional (2D) checkerboard charge density wave (CDW) in the low-dimensional superconductor Ta4Pd3Te16. By determining its CDW properties across the temperature-pressure (T-P) phase diagram and comparing with prot otypical CDW materials, we conclude that Ta4Pd3Te16 features: a) an incommensurate CDW with a mixed character of dimensions (Q1D considering its needle-like shape along the b-axis, Q2D as the CDW has checkerboard wavevectors, and 3D because of CDW projections along all three axes); and b) one of the weakest CDWs compared to its superconductivity (SC), i.e. enhanced SC with respect to CDW, suggesting an interesting interplay of the two orders.
287 - M. Raichle , M. Reehuis , G. Andre 2008
Neutron diffraction has been used to determine the magnetic structure of Na$_8$Cu$_5$O$_{10}$, a stoichiometric compound containing chains based on edge-sharing CuO$_4$ plaquettes. The chains are doped with 2/5 hole per Cu site and exhibit long-range commensurate charge order with an onset well above room temperature. Below $T_N = 23$ K, the neutron data indicate long-range collinear magnetic order with a spin density modulation whose propagation vector is commensurate along and incommensurate perpendicular to the chains. Competing interchain exchange interactions are discussed as a possible origin of the incommensurate magnetic order.
We report measurements of the bulk magnetic susceptibility and ^{29}Si nuclear magnetic resonance (NMR) linewidth in the heavy-fermion alloy CeRhRuSi_2. The linewidth increases rapidly with decreasing temperature and reaches large values at low tempe ratures, which strongly suggests the wide distributions of local susceptibilities chi_j obtained in disorder-driven theories of non-Fermi-liquid (NFL) behavior. The NMR linewidths agree well with distribution functions P(chi) which fit bulk susceptibility and specific heat data. The apparent return to Fermi-liquid behavior observed below 1 K is manifested in the vanishing of P(chi) as chi to infty, suggesting the absence of strong magnetic response at low energies. Our results indicate the need for an extension of some current theories of disorder-driven NFL behavior in order to incorporate this low-temperature crossover.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا