ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of silicon oxide grains at low temperature

58   0   0.0 ( 0 )
 نشر من قبل Serge Krasnokutski A.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation of grains in the interstellar medium, i.e., at low temperature, has been proposed as a possibility to solve the lifetime problem of cosmic dust. This process lacks a firm experimental basis, which is the goal of this study. We have investigated the condensation of SiO molecules at low temperature using neon matrix and helium droplet isolation techniques. The energies of SiO polymerization reactions have been determined experimentally with a calorimetric method and theoretically with calculations based on the density functional theory. The combined experimental and theoretical values have revealed the formation of cyclic (SiO)$_k$ ($k$ = 2--3) clusters inside helium droplets at $T$ = 0.37 K. Therefore, the oligomerization of SiO molecules is found to be barrierless and is expected to be fast in the low-temperature environment of the interstellar medium on the surface of dust grains. The incorporation of numerous SiO molecules in helium droplets leads to the formation of nanoscale amorphous SiO grains. Similarly, the annealing and evaporation of SiO-doped Ne matrices lead to the formation of solid amorphous SiO on the substrate. The structure and composition of the grains were determined by infrared absorption spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Our results support the hypothesis that interstellar silicates textbf{can be formed} in the low temperature regions of the interstellar medium by accretion through barrierless reactions.

قيم البحث

اقرأ أيضاً

Transition metal impurities such as nickel, copper, and iron, in solid-state materials like silicon have a significant impact on the electrical performance of integrated circuits and solar cells. To study the impact of copper impurities inside bulk s ilicon on the electrical properties of the material, one needs to understand the configurational space of copper atoms incorporated inside the silicon lattice. In this work, we performed ReaxFF reactive force field based molecular dynamics simulations, studying different configurations of individual and crystalline copper atoms inside bulk silicon by looking at the diffusional behavior of copper in silicon. The ReaxFF Cu/Si parameter set was developed by training against DFT data, including the energy barrier for an individual Cu-atom inside a silicon lattice. We found that the diffusion of copper atoms has a direct relationship with the temperature. Moreover, it is also shown that individual copper atoms start to clusterize inside bulk silicon at elevated temperatures. Our simulation results provide a comprehensive picture of the effects of temperature and copper concentration on the crystallization of individual copper inside silicon lattice. Finally, the stress-strain relationship of Cu/Si compounds under uniaxial tensile loading have been obtained. Our results indicate a decrease in the elastic modulus with increasing level of Cu-impurity concentration. We observe spontaneous microcracking of the Si during the stress-strain tests as a consequence of the formation of a small Cu clusters adjacent to the Si surface.
The magnetic behavior of bcc iron nanoclusters, with diameters between 2 and 8 nm, is investigated by means of spin dynamics (SD) simulations coupled to molecular dynamics (MD-SD), using a distance-dependent exchange interaction. Finite-size effects in the total magnetization as well as the influence of the free surface and the surface/core proportion of the nanoclusters are analyzed in detail for a wide temperature range, going beyond the cluster and bulk Curie temperatures. Comparison is made with experimental data and with theoretical models based on the mean-field Ising model adapted to small clusters, and taking into account the influence of low coordinated spins at free surfaces. Our results for the temperature dependence of the average magnetization per atom M(T), including the thermalization of the transnational lattice degrees of freedom, are in very good agreement with available experimental measurements on small Fe nanoclusters. In contrast, significant discrepancies with experiment are observed if the translational degrees of freedom are artificially frozen. The finite-size effects on M(T) are found to be particularly important near the cluster Curie temperature. Simulated magnetization above the Curie temperature scales with cluster size as predicted by models assuming short-range magnetic ordering (SRMO). Analytical approximations to the magnetization as a function of temperature and size are proposed.
121 - Olivier Bourgeois 2006
We have performed thermal conductance measurements on individual single crystalline silicon suspended nanowires. The nanowires (130 nm thick and 200 nm wide) are fabricated by e-beam lithography and suspended between two separated pads on Silicon On Insulator (SOI) substrate. We measure the thermal conductance of the phonon wave guide by the 3 method. The cross-section of the nanowire approaches the dominant phonon wavelength in silicon which is of the order of 100 nm at 1K. Above 1.3K the conductance behaves as T3, but a deviation is measured at the lowest temperature which can be attributed to the reduced geometry.
Silicon photomultipliers (SiPMs) have a low radioactivity, compact geometry, low operation voltage, and reasonable photo-detection efficiency for vacuum ultraviolet light (VUV). Therefore it has the potential to replace photomultiplier tubes (PMTs) f or future dark matter experiments with liquid xenon (LXe). However, SiPMs have nearly two orders of magnitude higher dark count rate (DCR) compared to that of PMTs at the LXe temperature ($sim$ 165 K). This type of high DCR mainly originates from the carriers that are generated by band-to-band tunneling effect. To suppress the tunneling effect, we have developed a new SiPM with lowered electric field strength in cooperation with Hamamatsu Photonics K. K. and characterized its performance in a temperature range of 153 K to 298 K. We demonstrated that the newly developed SiPMs had 6--54 times lower DCR at low temperatures compared to that of the conventional SiPMs.
We present an experimental study of the Dynamic Nuclear Polarization (DNP) of si{} nuclei in silicon crystals of natural abundance doped with As in the temperature range 0.1-1 K and in strong magnetic field of 4.6 T. This ensures very high degree of electron spin polarization, extremely slow nuclear relaxation and optimal conditions for realization of Overhauser and resolved solid effects. We found that the solid effect DNP leads to an appearance of a pattern of holes and peaks in the ESR line, separated by the super-hyperfine interaction between the donor electron and si{} nuclei closest to the donor. On the contrary, the Overhauser effect DNP mainly affects the remote si{} nuclei having the weakest interaction with the donor electron. This leads to an appearance of a very narrow ($approx$ 3 mG wide) hole in the ESR line. We studied relaxation of the holes after burning, which is caused by the nuclear spin diffusion. Analyzing the spin diffusion data with a simple one-dimensional spectral diffusion model leads to a value of the spectral diffusion coefficient $D=8(3)times 10^{-3}$ mG$^2$/s. Our data indicate that the spin diffusion is not completely prevented even in the frozen core near the donors. The emergence of the narrow hole after the Overhauser DNP may be explained by a partial softening of the frozen core caused by Rabi oscillations of the electron spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا