ﻻ يوجد ملخص باللغة العربية
We explore the impact of modified gravity on B-modes, identifying two main separate effects: lensing and propagation of tensor modes. The location of the inflationary peak of the BB spectrum depends on the speed of gravitational waves; the amplitude of the lensing contribution depends on the anisotropic stress. We single out these effects using the quasi-static regime and considering models for which the background and the growth of matter perturbations are standard. Using available data we obtain that the gravitational wave speed is compatible with the speed of light and constrained to within about 10%.
We develop a systematic and unified approach to estimate all possible secondary (i.e. non-primordial) nonlinear effects to the cosmic microwave background (CMB) polarization, named curve-of-sight integration approach. In this approach, the Boltzmann
STPpol, POLARBEAR and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the compone
(abridged for arXiv) We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around $ellsim80$. The
We investigate the effect of the stochastic gravitational wave (GW) background produced by kinks on infinite cosmic strings, whose spectrum was derived in our previous work, on the B-mode power spectrum of the cosmic microwave background (CMB) anisot
The prospects for direct measurements of inflationary gravitational waves by next generation interferometric detectors inferred from the possible detection of B-mode polarization of the cosmic microwave background are studied. We compute the spectra