ﻻ يوجد ملخص باللغة العربية
The observed accelerated expansion of the Universe may be explained by dark energy or the breakdown of general relativity (GR) on cosmological scales. When the latter case, a modified gravity scenario, is considered, it is often assumed that the background evolution is the same as the $Lambda$CDM model but the density perturbation evolves differently. In this paper, we investigate more general classes of modified gravity, where both the background and perturbation evolutions are deviated from those in the $Lambda$CDM model. We introduce two phase diagrams, $alpha{rm-}fsigma _8$ and $H{rm-}fsigma _8$ diagrams; $H$ is the expansion rate, $fsigma_8$ is a combination of the growth rate of the Universe and the normalization of the density fluctuation which is directly constrained by redshift-space distortions, and $alpha$ is a parameter which characterizes the deviation of gravity from GR and can be probed by gravitational lensing. We consider several specific examples of Horndeskis theory, which is a general scalar-tensor theory, and demonstrate how deviations from the $Lambda$CDM model appears in the $alpha{rm-}fsigma _8$ and $H{rm-}fsigma _8$ diagrams. The predicted deviations will be useful for future large-scale structure observations to exclude some of the modified gravity models.
Testing a subset of viable cosmological models beyond General Relativity (GR), with implications for cosmic acceleration and the Dark Energy associated with it, is within the reach of Rubin Observatory Legacy Survey of Space and Time (LSST) and a par
Modified gravity theories predict in general a non standard equation for the propagation of gravitational waves. Here we discuss the impact of modified friction and speed of tensor modes on cosmic microwave polarization B modes. We show that the non
We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first
We study degeneracies between parameters in some of the widely used parametrized modified gravity models. We investigate how different observables from a future photometric weak lensing survey such as LSST, correlate the effects of these parameters a
At linear order in cosmological perturbations, departures from the growth in the cosmological standard model can be quantified in terms of two functions of redshift $z$ and Fourier number $k$. Previous studies have performed principal component forec