ترغب بنشر مسار تعليمي؟ اضغط هنا

STEREO/HI and Optical Observations of the Classical Nova V5583 Sagittarii

154   0   0.0 ( 0 )
 نشر من قبل Daniel Holdsworth
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The classical nova V5583 Sgr (Nova Sagittarii 2009 No 3) has been observed during the rise phase and shortly after by NASAs STEREO/HI instruments, with later optical spectroscopy obtained with the R-C Spectrograph at CTIO, Chile. The time of peak in the STEREO passband has been constrained to within 4 hours, as a result of the high cadence data obtained by STEREO/HI. The optical spectra show the nova evolving from the permitted to the nebular phases. The neon abundance in the ejecta is [Ne/O] > +1:0, which suggests that V5583 Sgr was most likely a neon nova.



قيم البحث

اقرأ أيضاً

We report the new detection of $^7$Be II in the ultraviolet spectra of V5669 Sgr during its early decline phase ($+24$ and $+28$ d). We identified three blue-shifted absorption systems in our spectra. The first two, referred to as low- and high-veloc ity components, were noticeably identified among H I Balmer, Na I D, and Fe II whose lower energies of transients are low ($<4$ eV). The third absorption component was identified among N II, He I, and C II lines whose lower energy levels are relatively high (9--21 eV). The absorption lines of $^7$Be II at $3130.583$ {AA}, and $3132.228$ {AA} were identified as the first and second components in our observations. No evidence suggested the existence of Li I at 6708 {AA} in any velocity components. The estimated number density ratio of lithium relative to hydrogen, which was finally produced by this object using the equivalent widths of $^7$Be and Ca II K, $N({rm ^{7}Li})/N({rm H})_{rm final}$ is $4.0pm0.7times10^{-6}$. This value is an order of magnitude lower than the average observed values for classical novae wherein $^7$Be has been detected, and is comparable to the most optimistic value of theoretical predictions.
We present radio light curves and spectra of the classical nova V1723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists ut ilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of V1723 Aql span 1-37 GHz in frequency, and we report on data from 14-175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of V1723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.
A classical nova is an eruption on the surface of a white dwarf in an accreting binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell. The shaping mechanisms of nova shells are probes of the processes that take place at energy scales between planetary nebulae and supernova remnants. We report on the discovery of nova shells surrounding the post-nova systems V4362 Sagittarii (1994) and more limited observations of DO Aquilae (1925). Distance measurements of 0.5p/m1.4 kpc for V4362 Sgr and 6.7 p/m 3.5 kpc -0.2 for DO Aql are found based on the expansion parallax method. The growth rates are measured to be 0.07``/year for DO Aql and 0.32``/year for V4362 Sgr. A preliminary investigation into the ionisation structure of the nova shell associated with V4362 Sgr is presented. The observed ionisation structure of nova shells depends strongly on their morphology and the orientation of the central component towards the observer. X-ray, IR and UV observations as well as optical integral field unit spectroscopy are required to better understand these interesting objects.
The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C_2 and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) in its nova envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infrared spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne II] emission at 12.8 micron was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 micron originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.
158 - M. J. Darnley 2014
Context: In late November 2013 a fifth eruption in five years of the M31 recurrent nova M31N 2008-12a was announced. Aims: In this Letter we address the optical lightcurve and progenitor system of M31N 2008-12a. Methods: Optical imaging data of t he 2013 eruption from the Liverpool Telescope, La Palma, and Danish 1.54m Telescope, La Silla, and archival Hubble Space Telescope near-IR, optical and near-UV data are astrometrically and photometrically analysed. Results: Photometry of the 2013 eruption, combined with three previous eruptions, enabled construction of a template light curve of a very fast nova, t2(V)~4 days. The archival data allowed recovery of the progenitor system in optical and near-UV data, indicating a red-giant secondary with bright accretion disk, or alternatively a system with a sub-giant secondary but dominated by a disk. Conclusions: The eruptions of M31N 2008-12a, and a number of historic X-ray detections, indicate a unique system with a recurrence timescale of ~1 year. This implies the presence of a very high mass white dwarf and a high accretion rate. The recovered progenitor system is consistent with such an elevated rate of accretion.We encourage additional observations, especially towards the end of 2014.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا