ترغب بنشر مسار تعليمي؟ اضغط هنا

A remarkable recurrent nova in M31 - The optical observations

161   0   0.0 ( 0 )
 نشر من قبل Matt Darnley
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. J. Darnley




اسأل ChatGPT حول البحث

Context: In late November 2013 a fifth eruption in five years of the M31 recurrent nova M31N 2008-12a was announced. Aims: In this Letter we address the optical lightcurve and progenitor system of M31N 2008-12a. Methods: Optical imaging data of the 2013 eruption from the Liverpool Telescope, La Palma, and Danish 1.54m Telescope, La Silla, and archival Hubble Space Telescope near-IR, optical and near-UV data are astrometrically and photometrically analysed. Results: Photometry of the 2013 eruption, combined with three previous eruptions, enabled construction of a template light curve of a very fast nova, t2(V)~4 days. The archival data allowed recovery of the progenitor system in optical and near-UV data, indicating a red-giant secondary with bright accretion disk, or alternatively a system with a sub-giant secondary but dominated by a disk. Conclusions: The eruptions of M31N 2008-12a, and a number of historic X-ray detections, indicate a unique system with a recurrence timescale of ~1 year. This implies the presence of a very high mass white dwarf and a high accretion rate. The recovered progenitor system is consistent with such an elevated rate of accretion.We encourage additional observations, especially towards the end of 2014.



قيم البحث

اقرأ أيضاً

The Andromeda Galaxy recurrent nova M31N 2008-12a had been caught in eruption eight times. The inter-eruption period of M31N 2008-12a is ~1 year, making it the most rapidly recurring system known, and a strong single-degenerate Type Ia Supernova prog enitor candidate. Following the 2013 eruption, a campaign was initiated to detect the predicted 2014 eruption and to then perform high cadence optical photometric and spectroscopic monitoring using ground-based telescopes, along with rapid UV and X-ray follow-up with the Swift satellite. Here we report the results of a high cadence multicolour optical monitoring campaign, the spectroscopic evolution, and the UV photometry. We also discuss tantalising evidence of a potentially related, vastly-extended, nebulosity. The 2014 eruption was discovered, before optical maximum, on October 2, 2014. We find that the optical properties of M31N 2008-12a evolve faster than all Galactic recurrent novae known, and all its eruptions show remarkable similarity both photometrically and spectroscopically. Optical spectra were obtained as early as 0.26 days post maximum, and again confirm the nova nature of the eruption. A significant deceleration of the inferred ejecta expansion velocity is observed which may be caused by interaction of the ejecta with surrounding material, possibly a red giant wind. We find a low ejected mass and low ejection velocity, which are consistent with high mass-accretion rate, high mass white dwarf, and short recurrence time models of novae. We encourage additional observations, especially around the predicted time of the next eruption, towards the end of 2015.
The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption ten times, including yearly eruptions from 2008-2014. With a measured recurrence period of $P_mathrm{rec}=351pm13$ days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground and space-based follow-up programs. In this paper we present the 2015 detection; visible to near-infrared photometry and visible spectroscopy; and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2m (Hawaii) discovered the 2015 eruption, estimated to have commenced at Aug. $28.28pm0.12$ UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities $sim13000$ km s$^{-1}$, possibly collimated outflows. Photometric and spectroscopic observations of the eruption provide strong evidence supporting a red giant donor. An apparently stochastic variability during the early super-soft X-ray phase was comparable in amplitude and duration to past eruptions, but the 2013 and 2015 eruptions show evidence of a brief flux dip during this phase. The multi-eruption Swift/XRT spectra show tentative evidence of high-ionization emission lines above a high-temperature continuum. Following Henze et al. (2015a), the updated recurrence period based on all known eruptions is $P_mathrm{rec}=174pm10$ d, and we expect the next eruption of M31N 2008-12a to occur around mid-Sep. 2016.
The Andromeda Galaxy recurrent nova M31N 2008-12a has been caught in eruption nine times. Six observed eruptions in the seven years from 2008 to 2014 suggested a duty cycle of ~1 year, which makes this the most rapidly recurring system known and the leading single-degenerate Type Ia Supernova progenitor candidate; but no 2010 eruption has been found so far. Here we present evidence supporting the recovery of the 2010 eruption, based on archival images taken at and around the time. We detect the 2010 eruption in a pair of images at 2010 Nov 20.52 UT, with a magnitude of m_R = 17.84 +/- 0.19. The sequence of seven eruptions shows significant indications of a duty cycle slightly shorter than one year, which makes successive eruptions occur progressively earlier in the year. We compared three archival X-ray detections with the well observed multi-wavelength light curve of the 2014 eruption to accurately constrain the time of their optical peaks. The results imply that M31N 2008-12a might have in fact a recurrence period of ~6 months (175 +/- 11 days), making it even more exceptional. If this is the case, then we predict that soon two eruptions per year will be observable. Furthermore, we predict the next eruption will occur around late Sep 2015. We encourage additional observations.
The reported positions of 964 suspected nova eruptions in M31 recorded through the end of calendar year 2013 have been compared in order to identify recurrent nova candidates. To pass the initial screen and qualify as a recurrent nova candidate two o r more eruptions were required to be coincident within 0.1, although this criterion was relaxed to 0.15 for novae discovered on early photographic patrols. A total of 118 eruptions from 51 potential recurrent nova systems satisfied the screening criterion. To determine what fraction of these novae are indeed recurrent the original plates and published images of the relevant eruptions have been carefully compared. This procedure has resulted in the elimination of 27 of the 51 progenitor candidates (61 eruptions) from further consideration as recurrent novae, with another 8 systems (17 eruptions) deemed unlikely to be recurrent. Of the remaining 16 systems, 12 candidates (32 eruptions) were judged to be recurrent novae, with an additional 4 systems (8 eruptions) being possibly recurrent. It is estimated that ~4% of the nova eruptions seen in M31 over the past century are associated with recurrent novae. A Monte Carlo analysis shows that the discovery efficiency for recurrent novae may be as low as 10% that for novae in general, suggesting that as many as one in three nova eruptions observed in M31 arise from progenitor systems having recurrence times <~100 yr. For plausible system parameters, it appears unlikely that recurrent novae can provide a significant channel for the production of Type Ia supernovae.
163 - M. F. Bode 2009
We report combined optical and X-ray observations of nova M31N 2007-12b. Optical spectroscopy obtained 5 days after the 2007 December outburst shows evidence of very high ejection velocities (FWHM H$alpha simeq 4500$ km s$^{-1}$). In addition, Swift X-ray data show that M31N 2007-12b is associated with a Super-Soft Source (SSS) which appeared between 21 and 35 days post-outburst and turned off between then and day 169. Our analysis implies that $M_{rm WD} ga 1.3 $M$_{odot}$ in this system. The optical light curve, spectrum and X-ray behaviour are consistent with those of a recurrent nova. Hubble Space Telescope observations of the pre-outburst location of M31N 2007-12b reveal the presence of a coincident stellar source with magnitude and color very similar to the Galactic recurrent nova RS Ophiuchi at quiescence, where the red giant secondary dominates the emission. We believe that this is the first occasion on which a nova progenitor system has been identified in M31. However, the greatest similarities of outburst optical spectrum and SSS behaviour are with the supposed Galactic recurrent nova V2491 Cygni. A previously implied association of M31N 2007-12b with nova M31N 1969-08a is shown to be erroneous and this has important lessons for future searches for recurrent novae in extragalactic systems. Overall, we show that suitable complementary X-ray and optical observations can be used not only to identify recurrent nova candidates in M31, but also to determine subtypes and important physical parameters of these systems. Prospects are therefore good for extending studies of recurrent novae into the Local Group with the potential to explore in more detail such important topics as their proposed link to Type Ia Supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا