ترغب بنشر مسار تعليمي؟ اضغط هنا

On Uncertainty of Compton Backscattering Process

80   0   0.0 ( 0 )
 نشر من قبل XiaoHu Mo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف X.H.Mo




اسأل ChatGPT حول البحث

The uncertainty of Compton backscattering process is studied by virtue of analytical formulas, and the special effects of variant energy spread and energy drift on the systematic uncertainty estimation are also studied with Monte Carlo sampling technique. These quantitative conclusions are especially important for the understanding the uncertainty of beam energy measurement system.

قيم البحث

اقرأ أيضاً

63 - W. Guo , W. Xu , J.G. Chen 2006
Shanghai Laser Electron Gamma Source, a $gamma$-ray beam line of 10MeV order was proposed recently. The beam line is expected to generate $gamma$-ray with maximum energy of 22MeV by backward Compton scattering between CO$_2$ laser and electron in the 3.5GeV storage ring of future Shanghai Synchrotron Radiation Facility. The flux of non-collimated $gamma$-ray can be 10$^9$ $sim$ 10$^{10}$s$^{-1}$ if a commercial CO$_2$ laser of 100W order output power is employed and injected with optimized settings.
123 - M.Galynskii 2000
The backward Compton scattering is a basic process at future higher energy photon colliders. To obtain a high probability of e->gamma conversion the density of laser photons in the conversion region should be so high that simultaneous interaction of one electron with several laser photons is possible (nonlinear Compton effect). In this paper a detailed consideration of energy spectra, helicities of final photons and electrons in nonlinear backward Compton scattering of circularly polarized laser photons is given. Distributions of gamma-gamma luminosities with total helicities 0 and 2 are investigated. Very high intensity of laser wave leads to broadening of the energy (luminosity) spectra and shift to lower energies (invariant masses). Beside complicated exact formulae, approximate formulae for energy spectrum and polarization of backscattered photons are given for relatively small nonlinear parameter xi^2 (first order correction). All this is necessary for optimization of the conversion region at photon colliders and study of physics processes where a sharp edge of the luminosity spectrum and monochromaticity of collisions are important.
88 - T. Heinzl , D. Seipt , B. Kampfer 2009
We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus are the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzi ng the classical limit we precisely quantify the distinction between strong-field QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of the bremsstrahlung emitted by an electron in a plane wave laser field yields radiation into harmonics, as expected. This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focussing of the laser leads to a broad continuum while higher harmonics become visible only at moderate focussing, hence lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging over electron beam phase space. Finally, we propose a set of realistic parameters such that the observation of intensity induced spectral red-shift, higher harmonics, and their substructure, becomes feasible.
The energy measurement uncertainty of circular electron positron collider (CEPC) beam must be less than $10 mathrm{MeV}$ to accurately measure the mass of the Higgs/W/Z boson. A new microwave-beam Compton backscattering method is proposed to measure the beam energy by detecting the maximum energy of scattered photons. The uncertainty of the beam energy measurement is $6 mathrm{MeV}$. The detection accuracy of the maximum energy of scattered photons need to reach $10^{-4}$. The high-precision gamma detectors can only be a high-purity germanium (HPGe) detector. It is a semiconductor detector, the effective detection range of the gamma energy is 100$mathrm{keV}$-10$mathrm{MeV}$. The maximum energy of the scattered photons is chosen to be the higher the better to reduce the influence of the synchrotron radiation background. Therefore, the maximum energy of the scattered photons is selected to be 9$mathrm{MeV}$. Therefore, the initial photons should be microwave photons to collide with the electrons with the energy of 120GeV on CEPC. The cylindrical resonant cavity with ${TM_{010}}$ mode is selected to transmit microwaves. After Compton backscattering, the scattered photons emit from the vacuum tube of the synchrotron radiation and the energy is detected by the HPGe detector. The structure of shielding materials with polyethylene and lead is designed to minimize the background noise, such as the synchrotron radiation and the classical radiation from the electron beam in the cavity. The hole radius in the side wall of the cavity is about $1.5mathrm{mm}$ to allow the electron beam to pass through. The computer simulation technology (CST) software shows that the influence of the hole radius on the cavity field is negligible, and the influence of the hole radius on the resonance frequency can be corrected easily.
132 - K. Ta Phuoc , S. Corde , C. Thaury 2013
One of the major goals of research for laser-plasma accelerators is the realization of compact sources of femtosecond X-rays. In particular, using the modest electron energies obtained with existing laser systems, Compton scattering a photon beam off a relativistic electron bunch has been proposed as a source of high-energy and high-brightness photons. However, laser-plasma based approaches to Compton scattering have not, to date, produced X-rays above 1 keV. Here, we present a simple and compact scheme for a Compton source based on the combination of a laser-plasma accelerator and a plasma mirror. This approach is used to produce a broadband spectrum of X-rays extending up to hundreds of keV and with a 10,000-fold increase in brightness over Compton X-ray sources based on conventional accelerators. We anticipate that this technique will lead to compact, high-repetition-rate sources of ultrafast (femtosecond), tunable (X- through gamma-ray) and low-divergence (~1 degree) photons from source sizes on the order of a micrometre.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا