ﻻ يوجد ملخص باللغة العربية
The backward Compton scattering is a basic process at future higher energy photon colliders. To obtain a high probability of e->gamma conversion the density of laser photons in the conversion region should be so high that simultaneous interaction of one electron with several laser photons is possible (nonlinear Compton effect). In this paper a detailed consideration of energy spectra, helicities of final photons and electrons in nonlinear backward Compton scattering of circularly polarized laser photons is given. Distributions of gamma-gamma luminosities with total helicities 0 and 2 are investigated. Very high intensity of laser wave leads to broadening of the energy (luminosity) spectra and shift to lower energies (invariant masses). Beside complicated exact formulae, approximate formulae for energy spectrum and polarization of backscattered photons are given for relatively small nonlinear parameter xi^2 (first order correction). All this is necessary for optimization of the conversion region at photon colliders and study of physics processes where a sharp edge of the luminosity spectrum and monochromaticity of collisions are important.
We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus are the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzi
The photon spectrum from electrons scattering on multiple laser pulses exhibits interference effects not present for scattering on a single pulse. We investigate the conditions required for the experimental observation of these interference effects i
Future lepton colliders will be precision machines whose physics program includes close study of the Higgs sector and searches for new physics via polarised beams. The luminosity requirements of such machines entail very intense lepton bunches at the
The tremendous progress in high-intensity laser technology and the establishment of dedicated high-field laboratories in recent years have paved the way towards a first observation of quantum vacuum nonlinearities at the high-intensity frontier. We a
We study single, double and higher-order nonlinear Compton scattering where an electron interacts nonlinearly with a high-intensity laser and emits one, two or more photons. We study, in particular, how double Compton scattering is separated into one