ﻻ يوجد ملخص باللغة العربية
Ultrashort, intense light pulses permit the study of nanomaterials in the optical non-linear regime, potentially leading to optoelectronics that operate in the petahertz domain. These non-linear regimes are often present just below the damage threshold thus requiring the careful tuning of laser parameters to avoid the melting and disintegration of the materials. Detailed studies of the damage threshold of nanoscale materials are therefore needed. We present results on the damage threshold of Au nanowires when illuminated by intense femtosecond pulses. These nanowires were synthesized with the directed electrochemical nanowire assembly (DENA) process in two configurations: (1) free-standing Au nanowires on W electrodes and (2) Au nanowires attached to fused silica slides. In both cases the wires have a single-crystalline structure. For laser pulses with durations of 108 fs and 32 fs at 790 nm at a repetition rate of 2 kHz, we find that the free-standing nanowires melt at intensities close to 3 TW/cm$^2$ and 7.5 TW/cm$^2$, respectively. The Au nanowires attached to silica slides melt at slightly higher intensities, just above 10 TW/cm$^2$ for 32 fs pulses. Our results can be explained with an electron-phonon interaction model that describes the absorbed laser energy and subsequent heat conduction across the wire.
We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited el
Fast fabrication of micro-optical elements for generation of optical vortex beams based on the q-plate design is demonstrated by femtosecond (fs) laser ablation of gold film on glass. Q-plates with diameter of ~0.5 mm were made in ~1 min using galvan
We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave (CW) near-infrared laser. We employ a
Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work we apply polarized Raman spectroscopy to study the
We report on fabrication of whispering-gallery-mode microlasers in a Nd:glass chip by femtosecond laser three-dimensional (3D) micromachining. Main fabrication procedures include the fabrication of freestanding microdisks supported by thin pillars by