ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical damage threshold of Au nanowires in strong femtosecond laser fields

359   0   0.0 ( 0 )
 نشر من قبل Carlos Trallero
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrashort, intense light pulses permit the study of nanomaterials in the optical non-linear regime, potentially leading to optoelectronics that operate in the petahertz domain. These non-linear regimes are often present just below the damage threshold thus requiring the careful tuning of laser parameters to avoid the melting and disintegration of the materials. Detailed studies of the damage threshold of nanoscale materials are therefore needed. We present results on the damage threshold of Au nanowires when illuminated by intense femtosecond pulses. These nanowires were synthesized with the directed electrochemical nanowire assembly (DENA) process in two configurations: (1) free-standing Au nanowires on W electrodes and (2) Au nanowires attached to fused silica slides. In both cases the wires have a single-crystalline structure. For laser pulses with durations of 108 fs and 32 fs at 790 nm at a repetition rate of 2 kHz, we find that the free-standing nanowires melt at intensities close to 3 TW/cm$^2$ and 7.5 TW/cm$^2$, respectively. The Au nanowires attached to silica slides melt at slightly higher intensities, just above 10 TW/cm$^2$ for 32 fs pulses. Our results can be explained with an electron-phonon interaction model that describes the absorbed laser energy and subsequent heat conduction across the wire.



قيم البحث

اقرأ أيضاً

175 - Ziting Li , Bin Zeng , Wei Chu 2015
We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited el ectronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized molecular nitrogen-ion laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the molecular nitrogen-ion laser.
Fast fabrication of micro-optical elements for generation of optical vortex beams based on the q-plate design is demonstrated by femtosecond (fs) laser ablation of gold film on glass. Q-plates with diameter of ~0.5 mm were made in ~1 min using galvan ometric scanners with writing speed of 5 mm/s. Period of gratings of 0.8 micrometers and groove width of 250 nm were achieved using fs-laser ablation at 343 nm wavelength. Phase and intensity analysis of optical vortex generators was carried out at 633 nm wavelength and confirmed the designed performance. Efficiency of spin-orbital conversion of the q-plates made by ablation of 50-nm-thick film of gold was ~3%. Such gratings can withstand thermal annealing up to 800C. They can be used as optical vortex generators using post-selection of polarisation.
We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave (CW) near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force, the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, expected from the evanescent plasmon field.
Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as providing a technique for their optimization.
We report on fabrication of whispering-gallery-mode microlasers in a Nd:glass chip by femtosecond laser three-dimensional (3D) micromachining. Main fabrication procedures include the fabrication of freestanding microdisks supported by thin pillars by femtosecond laser ablation of the glass substrate immersed in water, followed by CO2 laser annealing for surface smoothing. Lasing is observed at a pump threshold as low as ~69 {mu}W at room temperature with a continuous-wave laser diode operating at 780nm. This technique allows for fabrication of microcavities of high quality factors in various dielectric materials such as glasses and crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا