ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond

424   0   0.0 ( 0 )
 نشر من قبل Bel\\'en Sotillo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as providing a technique for their optimization.



قيم البحث

اقرأ أيضاً

A first demonstration and complete characterization of mid-infrared waveguides in diamond are reported in detail. Waveguides were designed for 2.4 um and 8.6 um waveguiding, with their group velocity dispersion was analyzed using femtosecond pulses a t 2.4 um wavelength propagated through the waveguide and the bulk substrate. The total dispersion was found to be dominated by the bulk material rather than the waveguide, and was on the range of 275 fs2/mm, demonstrating that femtosecond laser written modifications in diamond introduce negligible perturbations to the intrinsic material.
Femtosecond laser writing is applied to form Bragg grating waveguides in the diamond bulk. Type II waveguides are integrated with a single pulse point-by-point periodic laser modification positioned towards the edge of the waveguide core. These photo nic devices, operating in the telecommunications band, allow for simultaneous optical waveguiding and narrowband reflection from a 4th order grating. This fabrication technology opens the way towards advanced 3D photonic networks in diamond for a range of applications.
Diamond has attracted great interest as a quantum technology platform thanks to its optically active nitrogen vacancy center (NV). The NVs ground state spin can be read out optically exhibiting long spin coherence times of about 1 ms even at ambient temperatures. In addition, the energy levels of the NV are sensitive to external fields. These properties make NVs attractive as a scalable platform for efficient nanoscale resolution sensing based on electron spins and for quantum information systems. Diamond photonics enhances optical interaction with NVs, beneficial for both quantum sensing and information. Diamond is also compelling for microfluidic applications due to its outstanding biocompatibility, with sensing functionality provided by NVs. However, it remains a significant challenge to fabricate photonics, NVs and microfluidics in diamond. In this Report, an overview is provided of ion irradiation and femtosecond laser writing, two promising fabrication methods for diamond based quantum technological devices. The unique capabilities of both techniques are described, and the most important fabrication results of color center, optical waveguide and microfluidics in diamond are reported, with an emphasis on integrated devices aiming towards high performance quantum sensors and quantum information systems of tomorrow
We demonstrate the first buried optical waveguides in diamond using focused femtosecond laser pulses. The properties of nitrogen vacancy centers are preserved in the waveguides, making them promising for diamond-based magnetometers or quantum information systems.
Although diamond photonics has driven considerable interest and useful applications, as shown in frequency generation devices and single photon emitters, fundamental studies on the third-order optical nonlinearities of diamond are still scarce, stall ing the development of an integrated platform for nonlinear and quantum optics. The purpose of this paper is to contribute to those studies by measuring the spectra of two-photon absorption coefficient ($beta$) and the nonlinear index of refraction (n$_2$) of diamond using femtosecond laser pulses, in a wide spectral range. These measurements show the magnitude of $beta$ increasing from 0.07 to 0.23 cm/GW, as it approaches the bandgap energy, in the region from 3.18 to 4.77 eV (390 - 260 nm), whereas the n$_2$ varies from zero to 1.7E-19 m$^2$/W in the full measured range, from 0.83 - 4.77 eV (1500 - 260 nm). The experimental results are compared with theoretical models for nonlinear absorption and refraction in indirect gap semiconductors, indicating the two-photon absorption as the dominant effect in the dispersion of the third-order nonlinear susceptibility. These data, together with optical Kerr gate measurements, also provided here, are of foremost relevance to the understanding of ultrafast optical processes in diamond and its nonlinear properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا