ﻻ يوجد ملخص باللغة العربية
The auto-cross covariance matrix is defined as [mathbf{M}_n=frac{1} {2T}sum_{j=1}^Tbigl(mathbf{e}_jmathbf{e}_{j+tau}^*+mathbf{e}_{j+ tau}mathbf{e}_j^*bigr),] where $mathbf{e}_j$s are $n$-dimensional vectors of independent standard complex components with a common mean 0, variance $sigma^2$, and uniformly bounded $2+eta$th moments and $tau$ is the lag. Jin et al. [Ann. Appl. Probab. 24 (2014) 1199-1225] has proved that the LSD of $mathbf{M}_n$ exists uniquely and nonrandomly, and independent of $tau$ for all $tauge 1$. And in addition they gave an analytic expression of the LSD. As a continuation of Jin et al. [Ann. Appl. Probab. 24 (2014) 1199-1225], this paper proved that under the condition of uniformly bounded fourth moments, in any closed interval outside the support of the LSD, with probability 1 there will be no eigenvalues of $mathbf{M}_n$ for all large $n$. As a consequence of the main theorem, the limits of the largest and smallest eigenvalue of $mathbf{M}_n$ are also obtained.
We introduce a new random matrix model called distance covariance matrix in this paper, whose normalized trace is equivalent to the distance covariance. We first derive a deterministic limit for the eigenvalue distribution of the distance covariance
Consider two $p$-variate populations, not necessarily Gaussian, with covariance matrices $Sigma_1$ and $Sigma_2$, respectively, and let $S_1$ and $S_2$ be the sample covariances matrices from samples of the populations with degrees of freedom $T$ and
The consistency and asymptotic normality of the spatial sign covariance matrix with unknown location are shown. Simulations illustrate the different asymptotic behavior when using the mean and the spatial median as location estimator.
Let $bY =bR+bX$ be an $Mtimes N$ matrix, where $bR$ is a rectangular diagonal matrix and $bX$ consists of $i.i.d.$ entries. This is a signal-plus-noise type model. Its signal matrix could be full rank, which is rarely studied in literature compared w
We consider general high-dimensional spiked sample covariance models and show that their leading sample spiked eigenvalues and their linear spectral statistics are asymptotically independent when the sample size and dimension are proportional to each