ﻻ يوجد ملخص باللغة العربية
The science goals for ground-based large-area surveys, such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better. This performance will need to be achieved with data taken over the course of many years, and often in less than ideal conditions. This paper describes a strategy to achieve precise internal calibration of imaging survey data taken in less than photometric conditions, and reports results of an observational study of the techniques needed to implement this strategy. We find that images of celestial fields used in this case study with stellar densities of order one per arcmin-squared and taken through cloudless skies can be calibrated with relative precision of 0.5 per cent (reproducibility). We report measurements of spatial structure functions of cloud absorption observed over a range of atmospheric conditions, and find it possible to achieve photometric measurements that are reproducible to 1 per cent in images that were taken through cloud layers that transmit as little as 25 per cent of the incident optical flux (1.5 magnitudes of extinction). We find, however, that photometric precision below 1 per cent is impeded by the thinnest detectable cloud layers. We comment on implications of these results for the observing strategies of future surveys.
Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over
Cadenced optical imaging surveys in the next decade will be capable of detecting time-varying galaxy-scale strong gravitational lenses in large numbers, increasing the size of the statistically well-defined samples of multiply-imaged quasars by two o
GravityCam is a new concept of ground-based imaging instrument capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. Advances in optical and near infrared imaging technologies allow imag
We present an alternative Corrector-ADC design for GMT. The design consists of just 3 silica lenses, of maximum size 1.51m, and includes only a single low-precision asphere for 20 field-of-view, and none for 10. The polychromatic (360nm-1300nm) image
Contamination due to foregrounds (Galactic and Extra-galactic), calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a p